若拋物線y2=2px(p>0)上橫坐標(biāo)為6的點(diǎn)到焦點(diǎn)的距離等于8,則焦點(diǎn)到準(zhǔn)線的距離是(  )
分析:由方程可得拋物線的焦點(diǎn)和準(zhǔn)線,進(jìn)而由拋物線的定義可得6-(-
p
2
)=8,解之可得p值,進(jìn)而可得所求.
解答:解:由題意可得拋物線y2=2px(p>0)開(kāi)口向右,
焦點(diǎn)坐標(biāo)(
p
2
,0),準(zhǔn)線方程x=-
p
2
,
由拋物線的定義可得拋物線上橫坐標(biāo)為6的點(diǎn)到準(zhǔn)線的距離等于8,
即6-(-
p
2
)=8,解之可得p=4
故焦點(diǎn)到準(zhǔn)線的距離為
p
2
-(-
p
2
)
=p=4
故選D
點(diǎn)評(píng):本題考查拋物線的定義,關(guān)鍵是由拋物線的方程得出其焦點(diǎn)和準(zhǔn)線,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若拋物線y2=2px(p>0)的準(zhǔn)線通過(guò)雙曲線
x2
7
-
y2
2
=1
的一個(gè)焦點(diǎn),則p=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若拋物線y2=2px的焦點(diǎn)與橢圓
x2
12
+
y2
3
=1
的右焦點(diǎn)重合,則p的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若拋物線y2=2px(p>0)上有一點(diǎn)M,其橫坐標(biāo)為8,它到焦點(diǎn)的距離為9,
(1)求焦點(diǎn)F的坐標(biāo)
(2)并求直線MF的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的焦點(diǎn)為F1(-1,0)、F2(1,0),點(diǎn)P(-1,
2
2
)
在橢圓上.
(1)求橢圓C的方程;
(2)若拋物線y2=2px(p>0)與橢圓C相交于點(diǎn)M、N,當(dāng)△OMN(O是坐標(biāo)原點(diǎn))的面積取得最大值時(shí),求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若拋物線y2=2px的焦點(diǎn)與雙曲線
x2
16
-
y2
9
=1
的右焦點(diǎn)重合,則p的值為( 。
A、-10
B、5
C、2
7
D、10

查看答案和解析>>

同步練習(xí)冊(cè)答案