【題目】如圖,已知拋物線和⊙ ,過(guò)拋線上一點(diǎn) 作兩條直線與⊙相切于A、B兩點(diǎn),分別交拋物線于E、F兩點(diǎn),圓心點(diǎn)到拋物線準(zhǔn)線的距離為

(Ⅰ)求拋物線的方程;

(Ⅱ)當(dāng) 的角平分線垂直x軸時(shí),求直線EF的斜率;

(Ⅲ)若直線AB在軸上的截距為,求的最小值.

【答案】(Ⅰ) ;(Ⅱ)-;(Ⅲ)-11.

【解析】

(Ⅰ)由即可得解;

(Ⅱ)當(dāng)的角平分線垂直軸時(shí),點(diǎn) ,由化簡(jiǎn)即可得解;

(Ⅲ)設(shè)點(diǎn) ,以為圓心,為半徑的圓方程為 與⊙方程:相減可得直線,令利用函數(shù)單調(diào)性即可得解.

(Ⅰ)∵點(diǎn)到拋物線準(zhǔn)線的距離為 ,

,即拋物線的方程為

(Ⅱ)∵當(dāng)的角平分線垂直軸時(shí),點(diǎn) ,

設(shè) , ,

, ∴

(Ⅲ)設(shè)點(diǎn) ,

為圓心,為半徑的圓方程為 ,……①

方程:.……②

①-②得:

直線的方程為

當(dāng)時(shí),直線軸上的截距 ,

關(guān)于的函數(shù)在單調(diào)遞增, ∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為直角梯形,,,平面底面,,.

(Ⅰ)判斷平面與平面是否垂直,并給出證明;

(Ⅱ)若,,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若函數(shù)x=1時(shí)取得極值,求實(shí)數(shù)a的值;

2)當(dāng)0a1時(shí),求零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是橢圓C上的一點(diǎn),橢圓C的離心率與雙曲線的離心率互為倒數(shù),斜率為直線l交橢圓CB,D兩點(diǎn),且A、B、D三點(diǎn)互不重合.

1)求橢圓C的方程;

2)若分別為直線ABAD的斜率,求證:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)、分別是橢圓的左、右焦點(diǎn).若是該橢圓上的一個(gè)動(dòng)點(diǎn),的最大值為1.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為(不重合),則直線軸是否交于一個(gè)定點(diǎn)?若是請(qǐng)寫(xiě)出定點(diǎn)坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) ①若,則的零點(diǎn)有_____個(gè);②若的值域?yàn)?/span>,則實(shí)數(shù)的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)有限數(shù)列,定義集合為數(shù)列的伴隨集合.

(Ⅰ)已知有限數(shù)列和數(shù)列.分別寫(xiě)出的伴隨集合;

(Ⅱ)已知有限等比數(shù)列,求的伴隨集合中各元素之和;

(Ⅲ)已知有限等差數(shù)列,判斷是否能同時(shí)屬于的伴隨集合,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)統(tǒng)計(jì),某蔬菜基地西紅柿畝產(chǎn)量的增加量(百千克)與某種液體肥料每畝使用量(千克)之間的對(duì)應(yīng)數(shù)據(jù)的散點(diǎn)圖,如圖所示.

1)依據(jù)數(shù)據(jù)的散點(diǎn)圖可以看出,可用線性回歸模型擬合的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說(shuō)明(若,則線性相關(guān)程度很高,可用線性回歸模型擬合);

2)求關(guān)于的回歸方程,并預(yù)測(cè)液體肥料每畝使用量為千克時(shí),西紅柿畝產(chǎn)量的增加量約為多少?

附:相關(guān)系數(shù)公式,回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:.

查看答案和解析>>

同步練習(xí)冊(cè)答案