已知函數(shù).若曲線在點處的切線與直線垂直,
(1)求實數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;

(1);(2)

解析試題分析:(1)根據(jù)函數(shù).若曲線在點處的切線與直線垂直,所以可知 ,求出函數(shù)的導數(shù)即,可得,即可求出a;(2)由(1)可知,即可求出函數(shù)的單調(diào)性.
解: (1) 
,因為,所以 
(2) 
 
 .
考點:1.導數(shù)的幾何意義;2.導數(shù)在單調(diào)性中的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(14分)(2011•天津)已知函數(shù)f(x)=4x3+3tx2﹣6t2x+t﹣1,x∈R,其中t∈R.
(Ⅰ)當t=1時,求曲線y=f(x)在點(0,f(0))處的切線方程;
(Ⅱ)當t≠0時,求f(x)的單調(diào)區(qū)間;
(Ⅲ)證明:對任意的t∈(0,+∞),f(x)在區(qū)間(0,1)內(nèi)均存在零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),且
(1)求的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)設函數(shù),若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知
(1)證明函數(shù)上是增函數(shù);
(2)用反證法證明方程沒有負數(shù)根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=ln x-ax+1在x=2處的切線斜率為-.
(1)求實數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)設g(x)=,對?x1∈(0,+∞),?x2∈(-∞,0)使得f(x1)≤g(x2)成立,求正實數(shù)k的取值范圍;
(3)證明: ++…+<(n∈N*,n≥2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)為自然對數(shù)的底數(shù)).
(1)求曲線處的切線方程;
(2)若的一個極值點,且點,滿足條件:.
(。┣的值;
(ⅱ)求證:點,是三個不同的點,且構成直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x3-3ax2+3x+1.
(1)設a=2,求f(x)的單調(diào)區(qū)間;
(2)設f(x)在區(qū)間(2,3)中至少有一個極值點,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)上是增函數(shù),求實數(shù)的取值范圍;
(2)若函數(shù)上的最小值為3,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中為實數(shù).
(1)當時,求函數(shù)在區(qū)間上的最大值和最小值;
(2)若對一切的實數(shù),有恒成立,其中的導函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案