解關(guān)于x的不等式:1+2cosx≥0.
考點(diǎn):三角函數(shù)線,余弦函數(shù)的圖象
專題:三角函數(shù)的求值
分析:利用余弦函數(shù)的圖象與性質(zhì),即可求得不等式cosx≥-
1
2
的解集.
解答: 解:∵1+2cosx≥0,∴cosx≥-
1
2
,作出y=cosx與y=-
1
2
的圖象,
由圖知,2kπ-
3
≤x≤2kπ+
3
,k∈Z,
∴不等式1+2cosx≥0的解集是{x|2kπ-
3
≤x≤2kπ+
3
,k∈Z.}
點(diǎn)評:本題考查余弦函數(shù)的圖象與性質(zhì),考查作圖能力與運(yùn)算求解能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是一次函數(shù),且f(0)=3,f(1)=4,
(1)求函數(shù)f(x)的解析式;
(2)若g(x)=2f(x),且g(m+1)<g(7),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=x
x
,g(x)=
2
x
,則f(x)•g(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P和Q是兩個集合,定義集合P-Q={x|x∈P,且x∉Q},如果P={x|log2x<1},{x||x-2|<1},那么P-Q=(  )
A、{x|0<x<1}
B、{x|x<x≤1}
C、{x|1≤x<2}
D、{x|2≤x<3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={2,4,5,7},B={3,4,5},則A∩B=( 。
A、{4,5}
B、{2,3,4,5,7}
C、{2,7}
D、{3,4,5,6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,已知△ABC是等腰直角三角形,∠ABC=90°,△PAC是直角三角形,∠PAC=90°,∠ACP=30°,平面PAC⊥平面ABC.
(1)求證:平面PAB⊥平面PBC;
(2)若PC=2,求△PBC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=2an-4n(n∈N*).
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=
an
λn
,其中λ>0,若{bn}為遞減數(shù)列,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)F(x)=(x2+
1
x
n+(
1
x2
+x)n(n是正整數(shù)) 在區(qū)間[
1
2
,2]上的最大值和最小值的積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過拋物線y2=2px(p>0)的焦點(diǎn)F的直線交拋物線于M(x1,y1)、N(x2,y2)兩個不同的點(diǎn),直線OM、ON(O為坐標(biāo)原點(diǎn))分別與準(zhǔn)線l相交于P、Q兩點(diǎn),下列結(jié)論正確的是
 
(請?zhí)钌险_結(jié)論的序號).
①PN∥QM;
②∠PFQ>
π
2
;
③|MF|=|MQ|
④|MN|<|MQ|+|NP|;
⑤以線段MF為直徑的圓必與y軸相切.

查看答案和解析>>

同步練習(xí)冊答案