3、直線x+y+1=0的傾斜角與在 y 軸上的截距分別是( 。
分析:先求出直線的斜率,再求直線的傾斜角;在直線方程中,令x=0,能得到它在 y 軸上的截距.
解答:解:∵直線x+y+1=0的斜率為-1,
所以它的傾斜角為135°,
在x+y+1=0中,由x=0,得y=-1,
∴x+y+1=0在 y 軸上的截距為-1.
故選D.
點(diǎn)評:本題考查直線的傾斜角的求法和求直線的截距,解題時(shí)要注意公式的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線(x-1)2+(y+1)2=2上的點(diǎn)到直線x-y+1=0的最小距離是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x-y-1=0的傾斜角是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)已知拋物線C:x2=2py(p>0),其焦點(diǎn)F到直線x-y-1=0的距離為
5
8
2

(Ⅰ)求拋物線C的方程;
(Ⅱ)若△ABC的三個(gè)頂點(diǎn)在拋物線C上,頂點(diǎn)B 的橫坐標(biāo)為1,且直線BA,BC的傾斜角互為補(bǔ)角,過點(diǎn)A、C分別作拋物線C 的切線,兩切線相交于點(diǎn)D,當(dāng)△ADC面積等于4時(shí),求直線BC的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線C:
x2
a2
-
y2
b2
=1 (a>0,b>0)
的兩條準(zhǔn)線間距離為3,右焦點(diǎn)到直線x+y-1=0的距離為
2
2

(1)求雙曲線C的方程;
(2)雙曲線C中是否存在以點(diǎn)P(1,
1
2
)
為中點(diǎn)的弦,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線x-y+1=0的傾斜角是( 。
A、30°B、45°?C、60°?D、135°

查看答案和解析>>

同步練習(xí)冊答案