(本小題滿分10分)選修4-4:坐標(biāo)系統(tǒng)與參數(shù)方程
在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為為參數(shù)),曲線C2的參數(shù)方程為為參數(shù)),在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線lθ=C1,C2各有一個(gè)交點(diǎn).當(dāng)=0時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng)=時(shí),這兩個(gè)交點(diǎn)重合.
(I)分別說明C1,C2是什么曲線,并求出ab的值;
(II)設(shè)當(dāng)=時(shí),lC1,C2的交點(diǎn)分別為A1,B1,當(dāng)=時(shí),lC1,C2的交點(diǎn)為A2B2,求四邊形A1A2B2B1的面積.
解:(I)C1是圓,C2是橢圓.
當(dāng)時(shí),射線l與C1,C2交點(diǎn)的直角坐標(biāo)分別為(1,0),(a,0),因?yàn)檫@兩點(diǎn)間的距離為2,所以a=3.
當(dāng)時(shí),射線l與C1,C2交點(diǎn)的直角坐標(biāo)分別為(0,1),(0,b),因?yàn)檫@兩點(diǎn)重合,所以b=1.
(II)C1,C2的普通方程分別為
當(dāng)時(shí),射線l與C1交點(diǎn)A1的橫坐標(biāo)為,與C2交點(diǎn)B1的橫坐標(biāo)為

當(dāng)時(shí),射線l與C1,C2的兩個(gè)交點(diǎn)A2,B2分別與A1,B1關(guān)于x軸對稱,因此,
四邊形A1A2B2B1為梯形.
故四邊形A1A2B2B1的面積為   …………10分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為
(1)若把曲線上的橫坐標(biāo)縮短為原來的,縱坐標(biāo)不變,得到曲線
求曲線在直角坐標(biāo)系下的方程
(2)在第(1)問的條件下,判斷曲線與直線的位置關(guān)系,并說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在曲線為參數(shù))上的點(diǎn)是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線 (為參數(shù)),為參數(shù)).
(Ⅰ)將,的方程化為普通方程;
(Ⅱ)若上的點(diǎn)對應(yīng)的參數(shù)為,上的動(dòng)點(diǎn),求中點(diǎn)到直線距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線x+y=a與曲線(θ是參數(shù))沒有公共點(diǎn),則實(shí)數(shù)a的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

.給出下列四個(gè)命題:
(1)方程表示的是圓;
(2)動(dòng)點(diǎn)到兩個(gè)定點(diǎn)的距離之和為定長,則動(dòng)點(diǎn)的軌跡為橢圓;
(3)點(diǎn)M與點(diǎn)F(0,-2)的距離比它到直線的距離小1的
軌跡方程是
(4)若雙曲線的離心率為e,且,則k的取值范圍是
其中正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

把參數(shù)方程為參數(shù))化為普通方程是___                 _

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(二)選做題:第14、15題為選做題,考生只能選做一題,
兩題全答的,只計(jì)前一題的得分
(坐標(biāo)系與參數(shù)方程)在極坐標(biāo)系中,設(shè)是直線上任一點(diǎn),是圓上任一點(diǎn),則的最小值是              。
1(幾何證明選講)如圖,割線經(jīng)過圓心O,,繞點(diǎn)逆時(shí)針旋120°到,連交圓于點(diǎn),則        .

查看答案和解析>>

同步練習(xí)冊答案