3.在斜三角形ABC中,tanA+tanB+tanAtanB=1,則∠C=135°.

分析 由條件利用兩角和的正切公式求得tan(A+B)=1,可得A+B的值,從而求得C的值.

解答 解:△ABC中,已知tanA+tanB+tanAtanB=1,
∴tan(A+B)(1-tanAtanB)+tanAtanB=1,
∴tan(A+B)(1-tanAtanB)=1-tanAtanB,
∴tan(A+B)=1,
∴A+B=45°,
∴C=135°.
故答案為:135°.

點評 本題主要考查兩角和的正切公式在三角函數(shù)化簡求值中的應用,考查了轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知正項數(shù)列{an}的前n項和為Sn,且$4{S_n}={({a_n}+1)^2}\;,\;n∈{N^*}$.
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)若bn=$\frac{{a}_{n}}{{2}^{n}}$,數(shù)列{bn}的前n項和為Tn,求Tn;
(3)在(2)的條件下,是否存在常數(shù)λ,使得數(shù)列{$\frac{{T}_{n}+λ}{{a}_{n+2}}$}為等比數(shù)列?若存在,試求出λ;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設z=3+4i,則復數(shù)z的模為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.(1)已知f(x)=$\frac{sin(2π-x)•cos(\frac{3}{2}π+x)}{cos(3π-x)•sin(\frac{11}{2}π-x)}$,求f(-$\frac{21π}{4}$)的值.
(2)已知-π<x<0,sin(π+x)-cosx=-$\frac{1}{5}$.
①求sinx-cosx的值;
②求$\frac{sin2x+2sin2x}{1-tanx}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=$\frac{1-x}{x}$+lnx,則f(x)在[$\frac{1}{2}$,2]上的最大值等于1-ln2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.有一塊半徑為R(R為正常數(shù))的半圓形空地,開發(fā)商計劃征地建一個游泳池ABCD和其附屬設施,附屬設施占地形狀是等腰△CDE,其中O為圓心,A,B在圓的直徑上,C,D,E在半圓周上,如圖.
(1)設∠BOC=θ,征地面積為f(θ),求f(θ)的表達式,并寫出定義域;
(2)當θ滿足g(θ)=f(θ)+R2sinθ取得最大值時,開發(fā)效果最佳,求出開發(fā)效果最佳的角θ的值,并求出g(θ)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.如圖,設Ox、Oy是平面內相交成45°角的兩條數(shù)軸,$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$分別是x軸、y軸正方向同向的單位向量,若向量$\overrightarrow{OP}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,則把有序數(shù)對(x,y)叫做向量$\overrightarrow{OP}$在坐標系xOy中的坐標,在此坐標系下,假設$\overrightarrow{OA}$=(-2,2$\sqrt{2}$),$\overrightarrow{OB}$=(2,0),$\overrightarrow{OC}$=(5,-3$\sqrt{2}$),則下列命題不正確的是(  )
A.$\overrightarrow{{e}_{1}}$=(1,0)B.|$\overrightarrow{OA}$|=2$\sqrt{3}$C.$\overrightarrow{OA}$∥$\overrightarrow{BC}$D.$\overrightarrow{OA}$⊥$\overrightarrow{OB}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知正三角形ABC的邊長為2,點D是邊BC上一動點,點D到AB、AC的距離分別為x、y,則xy的最大值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知圓M:(x-2a)2+y2=4a2與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)交于A、B兩點,點D為圓M與x軸正半軸的交點,點E為雙曲線C的左頂點,若四邊形EADB為菱形,則雙曲線C的離心率為( 。
A.$\frac{\sqrt{5}}{2}$B.3C.$\frac{\sqrt{10}}{2}$D.2

查看答案和解析>>

同步練習冊答案