在空間中,過點作平面的垂線,垂足為,記.設是兩個不同的平面,對空間任意一點,,恒有,則( 。
A.平面與平面垂直B.平面與平面所成的(銳)二面角為
C.平面與平面平行D.平面與平面所成的(銳)二面角為
A

試題分析:令,,則,即,。當平面與平面平行時,重合,重合,因為,,所以P點到兩個面的距離相等,與點P的任意性相矛盾,故C錯。則,由分析知,所以這五點共面設為,設,則三點共線,三點共線,即為所成二面角的平面角,由點P的任意性且恒有,可知三點重合,四邊形為矩形,所以,即。故A正確。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知是圓的直徑,垂直圓所在的平面,是圓上任一點,是線段的中點,是線段上的一點.

求證:(Ⅰ)若為線段中點,則∥平面;
(Ⅱ)無論何處,都有.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE=x,G是BC的中點。沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖) .

(1) 當x=2時,求證:BD⊥EG ;
(2) 若以F、B、C、D為頂點的三棱錐的體積記為f(x),求f(x)的最大值;
(3) 當f(x)取得最大值時,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知多面體中,平面,平面,的中點.

(1)求證:;
(2)求直線與平面所成角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設m,n是兩條不同的直線,,是三個不同的平面,給出下列命題:
①若,,則;
②若,,則;
③若,則
④若,,,則
上面命題中,真命題的序號是      (寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知六棱錐的底面是正六邊形,則下列結論正確的是(    )
A.
B.
C.直線
D.直線所成的角為45°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知a、b、c為三條不重合的直線,下面結論:①若a⊥b,a⊥c,則b∥c;②若a⊥b,a⊥c則b⊥c;③若a∥b,b⊥c,則a⊥c.其中正確的個數(shù)為(  )
A.0個 B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是兩個不重合的平面,給出下列命題:
①若外一條直線內一條直線平行,則;
②若內兩條相交直線分別平行于內的兩條直線 ,則
③設,若內有一條直線垂直于,則;
④若直線與平面內的無數(shù)條直線垂直,則.
上面的命題中,真命題的序號是 (    )
A.①③B.②④C.①②D.③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線,平面,且,給出下列命題: 
①若,則m⊥;      ②若,則m∥
③若m⊥,則;      ④若m∥,則.其中正確命題的個數(shù)是(   )
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案