過直線l:y=x+9上的一點P作一個長軸最短的橢圓,使其焦點為F1(-3,0),F(xiàn)2(3,0),則橢圓的方程為( 。
A.
x2
12
+
y2
3
=1
B.
x2
25
+
y2
16
=1
C.
x2
45
+
y2
36
=1
D.
x2
81
+
y2
72
=1
設直線l上的占P(t,t+9),
取F1(-3,0)關(guān)于l的對稱點Q(-9,6),
根據(jù)橢圓定義,2a=|PF1|+|PF2|=|PQ|+|PF2|≥|QF2|=6
5

當且僅當Q,P,F(xiàn)2共線,即kPF2=kQF2,
t+9
t-3
=
6
-12
,
上述不等式取等號,∴t=-5.
∴P(-5,4),
據(jù)c=3,a=3
5
,知a2=45,b2=36,
∴橢圓的方程為
x2
45
+
y2
36
=1.
故選C.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1,F(xiàn)2為橢圓x2+6y2=36的兩個焦點,P為橢圓上一點且PF1⊥PF2,則△F1PF2的面積是( 。
A.36B.12C.6D.4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(文)橢圓具有這樣的光學性質(zhì):從橢圓的一個焦點出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點.今有一個水平放置的橢圓形臺球盤,點A、B是它的焦點,長軸長為2a,焦距為2c,靜放在點A的小球(小球的半徑忽略不計)從點A沿直線出發(fā),經(jīng)橢圓壁反射后第一次回到點A時,小球經(jīng)過的路程是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓
x2
5
+y2=1
的左右焦點為F1,F(xiàn)2,設P(x0,y0)為橢圓上一點,當∠F1PF2為直角時,點P的橫坐標x0=( 。
A.±
15
4
B.±
15
2
C.±
1
2
D.±2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

直線y=kx+1與橢圓
x2
5
+
y2
m
=1
總有公共點,則m的值是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點為F橢圓與過原點的直線交于A,B兩點,連接AF,BF,若|AB|=26,|BF|=10,cos∠ABF=
5
13
,則橢圓的離心率為(  )
A.
5
13
B.
5
7
C.
13
17
D.
6
17

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓
x2
36
+
y2
27
=1
,過右焦點F作不垂直于x軸的弦交橢圓于A、B兩點,AB的垂直平分線交x軸于N,則|NF|:|AB|等于______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設F1,F(xiàn)2分別為橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,過F2的直線l與橢圓C相交于A,B兩點,直線l的傾斜角為60°,F(xiàn)1到直線l的距離為2
3

(Ⅰ)求橢圓C的焦距;
(Ⅱ)如果
AF2
=2
F2B
,求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點是F1(-c,0)、F2(c,0),M是橢圓上一點,且
F1M
F2M
=0,則離心率e的取值范圍是 ______.

查看答案和解析>>

同步練習冊答案