【題目】設(shè)恒成立.

1)求實數(shù)的值;

2)證明: 存在唯一的極大值點(diǎn),且

【答案】1;(2)證明見解析

【解析】試題分析:(1)將問題轉(zhuǎn)化為恒成立的問題處理,分 兩種情況判斷即可;(2)由(1)得,故問題可轉(zhuǎn)化為有零點(diǎn)的問題,并進(jìn)一步得到存在唯一的極大值點(diǎn)。然后根據(jù)函數(shù)的單調(diào)性可證得

試題解析

1)解:由條件知恒成立,

恒成立,

,則恒成立,

,

①當(dāng)時, 上單調(diào)遞增,

,

當(dāng)時, ,與矛盾,不合題意。

②當(dāng)時, 單調(diào)遞減,在單調(diào)遞增,

當(dāng) 有極小值,也為最小值,且最小值為。

恒成立,

,

,

單調(diào)遞增,在單調(diào)遞減,而

所以由解得,

綜上

2由條件得

,

所以單調(diào)遞減,在單調(diào)遞增

,

,

由零點(diǎn)存在定理及的單調(diào)性知,方程有唯一根,設(shè)為

從而有兩個零點(diǎn)0,

所以單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,

從而存在唯一的極大值點(diǎn),

,等號不成立,所以,

單調(diào)遞增,

所以,

綜上可得成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,斜率為1的直線過拋物線y2=2px(p>0)的焦點(diǎn),與拋物線交于兩點(diǎn)A、B,M為拋物線 上的動點(diǎn).
(1)若|AB|=8,求拋物線的方程;
(2)求SABM的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)討論函數(shù)的單調(diào)性;

2)若,求函數(shù)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列{an},a1=1,an=an+12+2an+1(Ⅰ)求證:數(shù)列{log2(an+1)}為等比數(shù)列:
(Ⅱ)設(shè)bn=n1og2(an+1),數(shù)列{bn}的前n項和為Sn , 求證:1≤Sn<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣ ﹣2lnx,a∈R.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個極值點(diǎn)x1 , x2 , 且x1<x2 , ①求a的取值范圍;
②證明:f(x2)<x2﹣1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若對任意 恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A,B兩名同學(xué)在5次數(shù)學(xué)考試中的成績統(tǒng)計如下面的莖葉圖所示,若A,B兩人的平均成績分別是xA , xB , 觀察莖葉圖,下列結(jié)論正確的是(
A.xA<xB , B比A成績穩(wěn)定
B.xA>xB , B比A成績穩(wěn)定
C.xA<xB , A比B成績穩(wěn)定
D.xA>xB , A比B成績穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年3月14日,“ofo共享單車”終于來到蕪湖,ofo共享單車又被親切稱作“小黃車”是全球第一個無樁共享單車平臺,開創(chuàng)了首個“單車共享”模式.相關(guān)部門準(zhǔn)備對該項目進(jìn)行考核,考核的硬性指標(biāo)是:市民對該項目的滿意指數(shù)不低于0.8,否則該項目需進(jìn)行整改,該部門為了了解市民對該項目的滿意程度,隨機(jī)訪問了使用共享單車的100名市民,并根據(jù)這100名市民對該項目滿意程度的評分,繪制了如下頻率分布直方圖: (I)為了了解部分市民對“共享單車”評分較低的原因,該部門從評分低于60分的市民中隨機(jī)抽取2人進(jìn)行座談,求這2人評分恰好都在[50,60)的概率;
(II)根據(jù)你所學(xué)的統(tǒng)計知識,判斷該項目能否通過考核,并說明理由.
(注:滿意指數(shù)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|﹣1<x<1},B={x|2≤4x≤8},C={x|a﹣4<x≤2a﹣7}.
(1)求(UA)∩B;
(2)若A∩C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案