【題目】如圖,幾何體中,,均為邊長(zhǎng)為2的正三角形,且平面平面,四邊形為正方形.
(1)若平面平面,求證:平面平面;
(2)若二面角為,求直線與平面所成角的正弦值.
【答案】(1)見(jiàn)解析(2)
【解析】
(1)取的中點(diǎn),的中點(diǎn),連接.可證明,結(jié)合,可知四邊形為平行四邊形.進(jìn)而由和及平面與平面平行的判定定理證明平面平面;
(2)連結(jié),可知即為二面角的平面角.以為原點(diǎn)建立空間直角坐標(biāo)系.由線段關(guān)系寫(xiě)出各個(gè)點(diǎn)的坐標(biāo),求得平面的法向量,即可根據(jù)直線與平面夾角的向量關(guān)系求得直線與平面所成角的正弦值.
(1)證明:取的中點(diǎn),的中點(diǎn),連接.如下圖所示:
因?yàn)?/span>,且平面平面,
所以平面,
同理平面,
所以,
又因?yàn)?/span>,
所以四邊形為平行四邊形,
所以,平面,
又, 平面,
又因?yàn)?/span>和交于點(diǎn)
所以平面平面.
(2)連結(jié),則,
又
所以為二面角的平面角,
所以
建立如圖所示的空間直角坐標(biāo)系,
則
所以
設(shè)平面的一個(gè)法向量是,
則,即,
令,即,
又因?yàn)?/span>,
所以,
即所求的角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直四棱柱中,底面為等腰梯形,,,且為棱中點(diǎn),為棱中點(diǎn).
(1)證明:平面;
(2)求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,討論函數(shù)的單調(diào)性;
(2)設(shè),是否存在實(shí)數(shù),對(duì)任意,,,有恒成立?若存在,求出的范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與拋物線:交于,兩點(diǎn),且的面積為16(為坐標(biāo)原點(diǎn)).
(1)求的方程.
(2)直線經(jīng)過(guò)的焦點(diǎn)且不與軸垂直,與交于,兩點(diǎn),若線段的垂直平分線與軸交于點(diǎn),試問(wèn)在軸上是否存在點(diǎn),使為定值?若存在,求該定值及的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù)F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范圍;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在區(qū)間[0,6]上的最大值M(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面,,,,,,為棱的中點(diǎn).
(1)求證:平面;
(2)求點(diǎn)到平面的距離,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】哈三中團(tuán)委組織了“古典詩(shī)詞”的知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名學(xué)生(男女各30名),將其成績(jī)分成六組,,…,,其部分頻率分布直方圖如圖所示.
(Ⅰ)求成績(jī)?cè)?/span>的頻率,補(bǔ)全這個(gè)頻率分布直方圖,并估計(jì)這次考試的眾數(shù)和中位數(shù);
(Ⅱ)從成績(jī)?cè)?/span>和的學(xué)生中選兩人,求他們?cè)谕环謹(jǐn)?shù)段的概率;
(Ⅲ)我們規(guī)定學(xué)生成績(jī)大于等于80分時(shí)為優(yōu)秀,經(jīng)統(tǒng)計(jì)男生優(yōu)秀人數(shù)為4人,補(bǔ)全下面表格,并判斷是否有99%的把握認(rèn)為成績(jī)是否優(yōu)秀與性別有關(guān)?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男 | 4 | 30 | |
女 | 30 | ||
合計(jì) | 60 |
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,圓經(jīng)過(guò)伸縮變換后得到曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長(zhǎng)度,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程及直線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)是上一動(dòng)點(diǎn),求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com