【題目】設(shè)函數(shù) f(x)=|x+2|﹣|x﹣3|﹣a

Ⅰ)當(dāng) a=1 時(shí),求函數(shù) f(x)的最大值;

Ⅱ)若 f(x)≤ 對(duì)任意 xR 恒成立,求實(shí)數(shù) a 的取值范圍.

【答案】 (1)4,(2) (0,1][4,+∞).

【解析】分析:(1)運(yùn)用絕對(duì)值不等式的性質(zhì),可得,即可得到f(x)的最大值;

(2)f(x)≤ 對(duì)任意 xR 恒成立,即為,解不等式可得a 的取值范圍.

詳解:(Ⅰ)當(dāng) a=1 時(shí),f(x)=|x+2|﹣|x﹣3|﹣1, |x+2|﹣|x﹣3|≤|(x+2)﹣(x﹣3)|=5,

f(x)≤4,

所以,當(dāng) x≥3 時(shí),f(x)取得最大值,且為 4;

)f(x)≤對(duì)任意 xR 恒成立,即為

f(x)max=5﹣a≤,

即為即有即為 a≥4 0<a≤1.

即有 a 的取值范圍是(0,1][4,+∞).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正△ABC內(nèi)接于半徑為2的圓O,點(diǎn)P是圓O上的一個(gè)動(dòng)點(diǎn),則 的取值范圍是(
A.[0,6]
B.[﹣2,6]
C.[0,2]
D.[﹣2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x+alnx(a>0).
(Ⅰ)當(dāng)a=2時(shí),試求函數(shù)圖線過(guò)點(diǎn)(1,f(1))的切線方程;
(Ⅱ)當(dāng)a=1時(shí),若關(guān)于x的方程f(x)=x+b有唯一實(shí)數(shù)解,試求實(shí)數(shù)b的取值范圍;
(Ⅲ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1、x2(x1<x2),且不等式f(x1)≥mx2恒成立,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“ALS冰桶挑戰(zhàn)賽是一項(xiàng)社交網(wǎng)絡(luò)上發(fā)起的籌款活動(dòng),活動(dòng)規(guī)定:被邀請(qǐng)者要么在24小時(shí)內(nèi)接受挑戰(zhàn),要么選擇為慈善機(jī)構(gòu)捐款(不接受挑戰(zhàn)),并且不能重復(fù)參加該活動(dòng).若被邀請(qǐng)者接受挑戰(zhàn),則他需在網(wǎng)絡(luò)上發(fā)布自己被冰水澆遍全身的視頻內(nèi)容,然后便可以邀請(qǐng)另外3個(gè)人參與這項(xiàng)活動(dòng).假設(shè)每個(gè)人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響.

1)若某參與者接受挑戰(zhàn)后,對(duì)其他3個(gè)人發(fā)出邀請(qǐng),則這3個(gè)人中至少有2個(gè)人接受挑戰(zhàn)的概率是多少?

2)為了解冰桶挑戰(zhàn)賽與受邀請(qǐng)的性別是否有關(guān),某調(diào)查機(jī)構(gòu)進(jìn)行了隨機(jī)抽樣調(diào)查,調(diào)查得到如下列聯(lián)表:


接受挑戰(zhàn)

不接受挑戰(zhàn)

合計(jì)

男性

45

15

60

女性

25

15

40

合計(jì)

70

30

100

根據(jù)表中數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為冰桶挑戰(zhàn)賽與受邀請(qǐng)者的性別有關(guān)

附:


0.100

0.050

0.010

0.001


2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為加快新能源汽車產(chǎn)業(yè)發(fā)展,推進(jìn)節(jié)能減排,國(guó)家對(duì)消費(fèi)者購(gòu)買新能源汽車給予補(bǔ)貼,其中對(duì)純電動(dòng)乘用車補(bǔ)貼標(biāo)準(zhǔn)如表:

新能源汽車補(bǔ)貼標(biāo)準(zhǔn)

車輛類型

續(xù)駛里程R(公里)

100≤R<180

180≤R<280

<280

純電動(dòng)乘用車

2.5萬(wàn)元/輛

4萬(wàn)元/輛

6萬(wàn)元/輛

某校研究性學(xué)習(xí)小組,從汽車市場(chǎng)上隨機(jī)選取了M輛純電動(dòng)乘用車,根據(jù)其續(xù)駛里程R(單次充電后能行駛的最大里程)作出了頻率與頻數(shù)的統(tǒng)計(jì)表:

分組

頻數(shù)

頻率

100≤R<180

3

0.3

180≤R<280

6

x

R≥280

y

z

合計(jì)

M

1


(1)求x、y、z、M的值;
(2)若從這M輛純電動(dòng)乘用車任選3輛,求選到的3輛車?yán)m(xù)駛里程都不低于180公里的概率;
(3)如果以頻率作為概率,若某家庭在某汽車銷售公司購(gòu)買了2輛純電動(dòng)乘用車,設(shè)該家庭獲得的補(bǔ)貼為X(單位:萬(wàn)元),求X的分布列和數(shù)學(xué)期望值E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)fx)=cos2x)的圖象向左平移個(gè)單位長(zhǎng)度后,得到函數(shù)gx)的圖象,則下列結(jié)論中正確的是_____.(填所有正確結(jié)論的序號(hào))

gx)的最小正周期為4π;

gx)在區(qū)間[0]上單調(diào)遞減;

gx)圖象的一條對(duì)稱軸為x;

gx)圖象的一個(gè)對(duì)稱中心為(,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)國(guó)家“精準(zhǔn)扶貧、精準(zhǔn)脫貧”的號(hào)召,某貧困縣在精準(zhǔn)推進(jìn)上下實(shí)功,在在精準(zhǔn)落實(shí)上見實(shí)效現(xiàn)從全縣扶貧對(duì)象中隨機(jī)抽取人對(duì)扶貧工作的滿意度進(jìn)行調(diào)查,以莖葉圖中記錄了他們對(duì)扶貧工作滿意度的分?jǐn)?shù)(滿分分)如圖所示,已知圖中的平均數(shù)與中位數(shù)相同.現(xiàn)將滿意度分為“基本滿意”(分?jǐn)?shù)低于平均分)、“滿意”(分?jǐn)?shù)不低于平均分且低于分)和“很滿意”(分?jǐn)?shù)不低于分)三個(gè)級(jí)別.

(1)求莖葉圖中數(shù)據(jù)的平均數(shù)和的值;

(2)從“滿意”和“很滿意”的人中隨機(jī)抽取人,求至少有人是“很滿意”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的方程為,過(guò)點(diǎn)的直線與圓交于兩點(diǎn),

1)若,求直線的方程;

2)若直線軸交于點(diǎn),設(shè),,R,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,五面體ABCDE中,四邊形ABDE是菱形,△ABC是邊長(zhǎng)為2的正三角形,∠DBA=60°,
(1)證明:DC⊥AB;
(2)若點(diǎn)C在平面ABDE內(nèi)的射影H,求CH與平面BCD所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案