如圖,G為△ABC的重心,AD為BC邊上的中線.過G的直線MN分別交邊AB,AC于M,N兩點(diǎn).設(shè),,記y=f(x).
(1)求函數(shù)y=f(x)的表達(dá)式及其定義域;
(2)設(shè)g(x)=x3+3a2x+2a(x∈[0,1]).若對(duì)任意的,總存在x2∈[0,1],使得f(x1)=g(x2)成立,求實(shí)數(shù)a的取值范圍.
解:(1)因?yàn)?IMG style="WIDTH: 154px; HEIGHT: 34px; VERTICAL-ALIGN: middle" src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20120904/201209041716359763161.png">

所以
又M,G,N三點(diǎn)共線,所以=3
解之得:
(2)設(shè)函數(shù)f(x),g(x)的值域分別為A,B,則AB,
因?yàn)?IMG style="WIDTH: 208px; HEIGHT: 37px; VERTICAL-ALIGN: middle" src="http://thumb.zyjl.cn/pic1/upload/papers/g02/20120904/201209041716362002895.png">,
上單調(diào)遞減,所以(或由x,y的地位均等、對(duì)稱性可知)
因?yàn)間(x)=x3+3a2x+2a(x∈[0,1]),
所以g'(x)=3x2+3a2≥0恒成立,所以g(x)在[0,1]上單調(diào)遞增,
所以B=[2a,3a2+2a+1],
從而
解得:或0
所以a的取值范圍是
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,G為△ABC的重心,AD為BC邊上的中線.過G的直線MN分別交邊AB,AC于M,N兩點(diǎn).設(shè)
AM
=x
AB
,
AN
=y
AC
,記y=f(x).
(1)求函數(shù)y=f(x)的表達(dá)式及其定義域;
(2)設(shè)g(x)=x3+3a2x+2a(x∈[0,1]).若對(duì)任意的x1∈[
1
2
,1]
,總存在x2∈[0,1],使得f(x1)=g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4--1:幾何證明選講
如圖,D為△ABC的BC邊上的一點(diǎn),⊙O1經(jīng)過點(diǎn)B、D,交AB于另一點(diǎn)E,⊙O2經(jīng)過點(diǎn)C、D,交AC于另一點(diǎn)F,⊙O1、⊙O2交于點(diǎn)G.求證:
(1)∠BAC+∠EGF=180°;
(2)∠EAG=∠EFG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南通市如皋市高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,G為△ABC的重心,AD為BC邊上的中線.過G的直線MN分別交邊AB,AC于M,N兩點(diǎn).設(shè),記y=f(x).
(1)求函數(shù)y=f(x)的表達(dá)式及其定義域;
(2)設(shè)g(x)=x3+3a2x+2a(x∈[0,1]).若對(duì)任意的,總存在x2∈[0,1],使得f(x1)=g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇期中題 題型:解答題

如圖,G為△ABC的重心,AD為BC邊上的中線.過G的直線MN分別交邊AB,AC于M,N兩點(diǎn).設(shè),記y=f(x).
(1)求函數(shù)y=f(x)的表達(dá)式及其定義域;
(2)設(shè)g(x)=x3+3a2x+2a(x∈[0,1]).若對(duì)任意的,總存在x2∈[0,1],使得f(x1)=g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案