已知:函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間上有最大值4,最小值1,設(shè)函數(shù)
(1)求a、b的值及函數(shù)f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在時(shí)恒成立,求實(shí)數(shù)k的取值范圍.
【答案】分析:(1)由二次函數(shù)g(x)=ax2-2ax+1+b的對(duì)稱軸為x=1,由題意得,或 ,解得a、b的值,即可得到函數(shù)f(x)的解析式.
(2)不等式即 ,在時(shí),設(shè),則k≤(t-1)2,
根據(jù)(t-1)2min>0,求得實(shí)數(shù)k的取值范圍.
解答:解:(1)由于二次函數(shù)g(x)=ax2-2ax+1+b的對(duì)稱軸為x=1,
由題意得:1°,解得
或  2°,解得.(舍去) 
∴a=1,b=0…(6分)
故g(x)=x2-2x+1,. …(7分)
(2)不等式f(2x)-k•2x≥0,即,∴.…(10分)
時(shí),設(shè),∴k≤(t-1)2,
由題意可得,函數(shù)f(x)的定義域?yàn)閧x|x≠0},故t≠1,即 ≤t≤2,且t≠1.
∵(t-1)2min>0,∴k≤0,即實(shí)數(shù)k的取值范圍為(-∞,0].…(14分)
點(diǎn)評(píng):本題主要考查求二次函數(shù)在閉區(qū)間上的最值,用待定系數(shù)法求函數(shù)的解析式,函數(shù)的恒成立問(wèn)題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•虹口區(qū)二模)已知:函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間
2,3
上有最大值4,最小值1,設(shè)函數(shù)f(x)=
g(x)
x

(1)求a、b的值及函數(shù)f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在x∈
-1,1
時(shí)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•虹口區(qū)二模)已知:函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)函數(shù)f(x)=
g(x)
x

(1)求a、b的值及函數(shù)f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]時(shí)恒成立,求實(shí)數(shù)k的取值范圍;
(3)如果關(guān)于x的方程f(|2x-1|)+t•(
4
|2x-1|
-3)=0有三個(gè)相異的實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省常州市奔牛高級(jí)中學(xué)高三(上)第一次段考數(shù)學(xué)試卷(解析版) 題型:解答題

已知:函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)函數(shù)f(x)=
(1)求a、b的值及函數(shù)f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]時(shí)恒成立,求實(shí)數(shù)k的取值范圍;
(3)如果關(guān)于x的方程f(|2x-1|)+t•(-3)=0有三個(gè)相異的實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省蘇州市張家港市梁豐高級(jí)中學(xué)高三(上)周日數(shù)學(xué)試卷(5)(解析版) 題型:解答題

已知:函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)函數(shù)f(x)=
(1)求a、b的值及函數(shù)f(x)的解析式;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]時(shí)恒成立,求實(shí)數(shù)k的取值范圍;
(3)如果關(guān)于x的方程f(|2x-1|)+t•(-3)=0有三個(gè)相異的實(shí)數(shù)根,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案