13.已知a1=$\frac{1}{2}$a2≠0,數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+1=3Sn-2Sn-1(n≥2),設(shè)bn=$\frac{{S}_{n}}{{a}_{n}}$(n∈N*).
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn=nbn+$\frac{n+1}{{2}^{n}}$(n∈N*),數(shù)列{cn}的前n項(xiàng)和為T(mén)n,證明:T10>109.

分析 (1)運(yùn)用數(shù)列的遞推式可得n≥2時(shí),an+1=2an,再由等比數(shù)列的通項(xiàng)公式和求和公式,即可得到所求數(shù)列的通項(xiàng)公式;
(2)求得cn=nbn+$\frac{n+1}{{2}^{n}}$=2n-$\frac{n}{{2}^{n-1}}$+$\frac{n+1}{{2}^{n}}$,運(yùn)用數(shù)列的求和方法:分組求和和裂項(xiàng)相消求和,即可得到所求和,即可得證.

解答 解:(1)由Sn+1=3Sn-2Sn-1(n≥2),可得Sn+1-Sn=2(Sn-Sn-1),
即為n≥2時(shí),an+1=2an
a1=$\frac{1}{2}$a2≠0,可得$\frac{{a}_{n+1}}{{a}_{n}}$=2,即數(shù)列{an}(n∈N*)是以2為公比的等比數(shù)列,
故an=a1•2n-1,Sn=$\frac{{a}_{1}(1-{2}^{n})}{1-2}$=a1•(2n-1),
則bn=$\frac{{S}_{n}}{{a}_{n}}$=$\frac{{2}^{n}-1}{{2}^{n-1}}$.
(2)證明:cn=nbn+$\frac{n+1}{{2}^{n}}$=2n-$\frac{n}{{2}^{n-1}}$+$\frac{n+1}{{2}^{n}}$,
則T10=2(1+2+…+10)-$\frac{1}{{2}^{0}}$+$\frac{2}{{2}^{1}}$-$\frac{2}{{2}^{1}}$+$\frac{3}{{2}^{2}}$+…-$\frac{10}{{2}^{9}}$+$\frac{11}{{2}^{10}}$
=2×$\frac{1}{2}$×10×11-1+$\frac{11}{{2}^{10}}$=109+$\frac{11}{{2}^{10}}$>109.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,注意運(yùn)用數(shù)列遞推式,考查等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,以及數(shù)列的求和方法:分組求和與裂項(xiàng)相消求和,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖所示,在三棱柱ABC-A1B1C1中,已知AC⊥平面BCC1B1,AC=BC=1,BB1=2,∠B1BC=60°.
(1)證明:B1C⊥AB;
(2)已知點(diǎn)E在棱BB1上,二面角A-EC1-C為45°,求$\frac{BE}{{B{B_1}}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖所示的空間幾何體ABCDEFG中,四邊形ABCD是邊長(zhǎng)為2的正方形,AE⊥平面ABCD,EF∥AB,EG∥AD,EF=EG=1.
(1)求證:平面CFG⊥平面ACE;
(2)在AC上是否一點(diǎn)H,使得EH∥平面CFG?若存在,求出CH的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史收益率(收益率=利潤(rùn)÷保費(fèi)收入)的頻率分布直方圖如圖所示:
(Ⅰ)試估計(jì)平均收益率;
(Ⅱ)根據(jù)經(jīng)驗(yàn),若每份保單的保費(fèi)在20元的基礎(chǔ)上每增加x元,對(duì)應(yīng)的銷量y(萬(wàn)份)與x(元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如下5組x與y的對(duì)應(yīng)數(shù)據(jù):
x(元)2530384552
銷售y(萬(wàn)冊(cè))7.57.16.05.64.8
據(jù)此計(jì)算出的回歸方程為$\hat y=10.0-bx$.
(i)求參數(shù)b的估計(jì)值;
(ii)若把回歸方程$\hat y=10.0-bx$當(dāng)作y與x的線性關(guān)系,用(Ⅰ)中求出的平均收益率估計(jì)此產(chǎn)品的收益率,每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大收益,并求出該最大收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知$\overrightarrow{a}$為單位向量,$\overrightarrow$=(0,2),且$\overrightarrow{a}$$•\overrightarrow$=1,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.各項(xiàng)均不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn,則$\frac{{S}_{5}}{{a}_{3}}$的值是( 。
A.$\frac{1}{2}$B.1C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.邊長(zhǎng)為2的正方形ABCD所在的平面與△CDE所在的平面交于CD,且AE⊥平面CDE,M為AD上的點(diǎn),AE=1,AM=$\frac{1}{2}$.
(Ⅰ)求證:EM⊥BD;
(Ⅱ)設(shè)點(diǎn)F是棱BC上一點(diǎn),若二面角A-DE-F的余弦值為$\frac{\sqrt{10}}{10}$,試確定點(diǎn)F在BC上的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.對(duì)于函數(shù)f(x)=asinx+bx3+cx+1(a,b,c∈R),選取a,b,c的一組值計(jì)算f(1)、f(-1),所得出的正確結(jié)果可能是(  )
A.2和1B.2和0C.2和-1D.2和-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.命題“?x0>0,使得(x0+1)${e}^{{x}_{0}}$>1”的否定是(  )
A.?x>0,總有(x+1)ex≤1B.?x≤0,總有(x+1)ex≤1
C.?x0≤0,總有(x0+1)${e}^{{x}_{0}}$≤1D.?x0>0,使得(x0+1)${e}^{{x}_{0}}$≤1

查看答案和解析>>

同步練習(xí)冊(cè)答案