已知點A(1,2)在圓x2+y2+2x+3y+m=0內(nèi),則m的取值范圍是
 
考點:點與圓的位置關(guān)系
專題:直線與圓
分析:直接把點代入圓的方程的左側(cè),表達式小于0,并且圓的方程表示圓,即可求出m的范圍.
解答: 解:因為點A(1,2)在圓x2+y2+2x+3y+m=0內(nèi),
所以1+4+2+6+m<0,解得m<-13,
方程表示圓,則:4+9-4m>0,解得m
13
4

故答案為:{m|m<-13}.
點評:本題考查點與圓的位置關(guān)系,注意圓的方程表示圓的條件的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-alnx-1,g(x)=
ex
ex
,a<0.
(1)曲線y=f(x)在x=1處的切線與直線2x-y+1=0平行,求a的值;
(2)若對任意的x1、x2∈[3,4](x1≠x2),|f(x2)-f(x1)|<|
1
g(x1)
-
1
g(x2)
|恒成立,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn=4-an-
1
2n-2
,求an與Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:sin2α+sin2β-sin2α•sin2β+cos2α•cos2β=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在棱長為1的正方體ABCD-A′B′C′D′中,E為棱BC的中點.
(1)在棱BB′上是否存在點M,使D′M⊥平面B′AE?為什么?
(2)在正方體表面ABB′A′上是否存在點N,使得D′N⊥平面B′AE?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
2sin(
x
2
-
π
4
)
3

(1)求函數(shù)振幅、周期和頻率;
(2)求函數(shù)的單調(diào)增區(qū)間和對稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=sin(-
3x
2
+
π
4
)+1的單調(diào)遞增區(qū)間,對稱軸,對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z=
a+4i
1+i
(a∈R),則在復(fù)平面內(nèi),“a<4”是“z對應(yīng)點在第一象限”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐A-BCD中,AB⊥平面BCD,BC⊥CD,∠CBD=60°,BC=2.
(Ⅰ)求證:平面ABC⊥平面ACD;
(Ⅱ)若E是BD的中點,F(xiàn)為線段AC上的動點,EF與平面ABC所成的角記為θ,當(dāng)tanθ的最大值為
15
2
,求二面角A-CD-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案