【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓的右焦點、右頂點分別為F,A,過原點的直線與橢圓C交于點P、Q(點P在第一象限內(nèi)),連結(jié)PA,QF,的面積是面積的3倍.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)已知M為線段PA的中點,連結(jié)QA,QM

①求證:Q,F,M三點共線;

②記直線QP,QM,QA的斜率分別為,,,若,求的面積.

【答案】12)①見解析②4

【解析】

(1)根據(jù)可得,的面積是面積的3,所以,再聯(lián)立求解基本量即可.

(2) 設(shè),再表示出,關(guān)于的表達(dá)式,化簡證明即可.

(3) 可得,代入橢圓可得,進(jìn)而求出

1)設(shè)橢圓C的焦距為2c.

因為,所以.

設(shè),的面積為.

過原點的直線與橢圓C交于點P,Q,

所以,

的面積為.

因為的面積是面積的3,

所以,

解得,,,

所以橢圓C的標(biāo)準(zhǔn)方程為.

2)①因為,所以.

因為,

所以,,

Q,F,M三點共線.

②因為,,,,

所以

化簡得,

解得(舍去),

代入,

因為點P在第一象限內(nèi),所以,.

因為M為線段PA的中點,所以.

因為O為線段PQ的中點,

所以,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,,過點的直線與橢圓相交于,兩點.

1)當(dāng)直線的斜率時,求的面積;

2)當(dāng)時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市在開展創(chuàng)建全國文明城市活動中,工作有序扎實,成效顯著,尤其是城市環(huán)境衛(wèi)生大為改觀,深得市民好評.“創(chuàng)文過程中,某網(wǎng)站推出了關(guān)于環(huán)境治理和保護(hù)問題情況的問卷調(diào)查,現(xiàn)從參與問卷調(diào)查的人群中隨機(jī)選出200人,并將這200人按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

1)求出a的值;

2)若已從年齡較小的第1,2組中用分層抽樣的方法抽取5人,現(xiàn)要再從這5人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,設(shè)第2組抽到人,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四面體A-BCD中,已知平面平面BCD,為正三角形,為等腰直角三角形,其中C為直角頂點,E,F分別為校ACAD的中點.

1)求證:平面BEF;

2)求證:平面ACD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在傳染病學(xué)中,通常把從致病刺激物侵人機(jī)體或者對機(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期. 一研究團(tuán)隊統(tǒng)計了某地區(qū)1000名患者的相關(guān)信息,得到如下表格:

潛伏期(單位:天)

人數(shù)

1)求這1000名患者的潛伏期的樣本平均數(shù)x (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表) ;

2)該傳染病的潛伏期受諸多因素的影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為潛伏期與患者年齡有關(guān);

潛伏期

潛伏期

總計

歲以上(含歲)

歲以下

總計

3)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨立,為了深入研究,該研究團(tuán)隊隨機(jī)調(diào)查了20名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?

附:

,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是正方形,AE平面ABCD,PDAE,PDAD2EA2,GF,H分別為BEBP,PC的中點.

1)求證:平面ABE平面GHF;

2)求直線GH與平面PBC所成的角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班同學(xué)在假期進(jìn)行社會實踐活動,對歲的人群隨機(jī)抽取n人進(jìn)行了一次當(dāng)前投資生活方式——“房地產(chǎn)投資的調(diào)查,得到如下統(tǒng)計和各年齡段人數(shù)頻率分布直方圖:

)求,,的值;

)從年齡在歲的房地產(chǎn)投資人群中采取分層抽樣法抽取9人參加投資管理學(xué)習(xí)活動,其中選取3人作為代表發(fā)言,記選取的3名代表中年齡在歲的人數(shù)為,求的分布列和期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,平面平面PAD,E的中點,FDC上一點,GPC上一點,且,.

1)求證:平面平面PAB;

2)若,,求直線PB與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某項針對我國《義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)》的研究中,列出各個學(xué)段每個主題所包含的條目數(shù)(如下表),下圖是統(tǒng)計表的條目數(shù)轉(zhuǎn)化為百分比,按各學(xué)段繪制的等高條形圖,由圖表分析得出以下四個結(jié)論,其中錯誤的是(

A.除了綜合實踐外,其它三個領(lǐng)域的條目數(shù)都隨著學(xué)段的升高而增加,尤其圖象幾何在第三學(xué)段增加較多,約是第二學(xué)段的.

B.所有主題中,三個學(xué)段的總和圖形幾何條目數(shù)最多,占50%,綜合實踐最少,約占4% .

C.第一、二學(xué)段數(shù)與代數(shù)條目數(shù)最多,第三學(xué)段圖形幾何條目數(shù)最多.

D.數(shù)與代數(shù)條目數(shù)雖然隨著學(xué)段的增長而增長,而其百分比卻一直在減少.“圖形幾何條目數(shù),百分比都隨學(xué)段的增長而增長.

查看答案和解析>>

同步練習(xí)冊答案