解不等式:4x-
1
2
-5•2x-1-3>0.
考點:其他不等式的解法
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:令2x=t(t>0),則原不等式可化為:
1
2
t2-
5
2
t-3>0,解出t,再由指數(shù)與對數(shù)的關(guān)系,即可得到解集.
解答: 解:令2x=t(t>0),
1
2
t2-
5
2
t-3>0,
解得t>6或t<-1(舍去),
由t>6,即2x>6,解得,x>log26.
則解集為(log26,+∞).
點評:本題考查指數(shù)不等式的解法,考查換元法解不等式的方法,注意指數(shù)函數(shù)的值域的運用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={0,1,2,3},B={0,2},則A∩B為( 。
A、{0,2}
B、{1,3}
C、{0,1,3}
D、{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)動點A、B(不重合)在橢圓9x2+16y2=144上,橢圓中心為O,且OA⊥OB,則點O到弦AB的距離OH=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點A,B在曲線x2-y2=2(x>0)上,則
OA
OB
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程x2+y2-6x+2y+F=0是圓的方程,則F的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在實數(shù)集R上的偶函數(shù),且[0,+∞)在上是增函數(shù),若f(a)≤f(-2),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果有窮數(shù)列a1,a2,a3…am(m為正整數(shù))滿足條件a1=am,a2=am-1,…,am=a1,即ai=am-i+1,我們稱其為“對稱數(shù)列”. 若{cn}是19項的“對稱數(shù)列”,其中c10,c11,…,c19是首項為1,公比為2的等比數(shù)列,則c19=
 
,S19=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知線段AB的端點B的坐標(biāo)是(4,3),端點A在圓x2+y2+2x-3=0上運動,求線段AB上離B較近的三等分點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A=
π
3
,AB=4且S△ABC=
3
,則BC邊的長為
 

查看答案和解析>>

同步練習(xí)冊答案