A. | $\sqrt{7}$ | B. | 3 | C. | $\sqrt{5}$ | D. | $\sqrt{6}$ |
分析 求出圓錐底面圓的周長(zhǎng),則以SA為一邊,將圓錐展開,就得到一個(gè)以S為圓心,以SA為半徑的扇形,根據(jù)弧長(zhǎng)公式求出展開后扇形的圓心角,根據(jù)勾股定理求出結(jié)論.
解答 解:圓錐底面是以AB為直徑的圓,圓的周長(zhǎng)是2π,
以SA為一邊,將圓錐展開,就得到一個(gè)以S為圓心,以SA為半徑的扇形,弧長(zhǎng)是l=2π,
母線長(zhǎng)為2,展開后的圓心角是π,
則由A點(diǎn)繞側(cè)面至點(diǎn)C,最短路線長(zhǎng)為$\sqrt{4+1}$=$\sqrt{5}$,
故選C.
點(diǎn)評(píng) 本題考查了圓錐的計(jì)算,平面展開-最短路線問題,勾股定理,弧長(zhǎng)公式等知識(shí)點(diǎn)的應(yīng)用,圓錐的側(cè)面展開圖是一個(gè)扇形,此扇形的弧長(zhǎng)等于圓錐底面周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).本題就是把圓錐的側(cè)面展開成扇形,“化曲面為平面”,用勾股定理解決.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [4,6] | B. | [5,6] | C. | [25,36] | D. | [16,36] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
品種 | 第一年 | 第二年 | 第三年 | 第四年 | 第五年 |
甲 | 9.8 | 9.9 | 10.1 | 10 | 10.2 |
乙 | 9.4 | 10.3 | 10.8 | 9.7 | 9.8 |
A. | 甲與乙穩(wěn)定性相同 | |
B. | 甲穩(wěn)定性好于乙的穩(wěn)定性 | |
C. | 乙穩(wěn)定性好于甲的穩(wěn)定性 | |
D. | 甲與乙穩(wěn)定性隨著某些因素的變化而變化 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,π) | B. | [0,$\frac{π}{4}$]∪[$\frac{3}{4}$π,π) | C. | [0,$\frac{π}{4}$] | D. | [0,$\frac{π}{4}$]∪($\frac{π}{2}$,π) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com