若(1+2x)2n=a0+a1x+a2x2+…a2n-1x2n-1+a2nx2n,則a1+a3+…a2n-1=
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:計(jì)算題,二項(xiàng)式定理
分析:令已知等式中的x分別取1,-1得到兩個(gè)等式,兩式相加得到要求的值.
解答: 解:令x=1得a0+a1+a2+…+a2n=32n
令x=-1得a0-a1+a2+…+a2n=1
所以兩式相減得a0+a2+…+a2n=
32n+1
2

故答案為:
32n+1
2
點(diǎn)評(píng):求二項(xiàng)展開式中的系數(shù)和問題,常采用的方法是賦值法.此法的關(guān)鍵是通過觀察給未知數(shù)賦什么值能得到要求的系數(shù)和.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)已知(a+a-12=3,求a3+a-3;
(2)已知a2x=
2
+1
,求
a3x+a-3x
ax+a-x

(3)已知x-3+1=a,求a2-2ax-3+x-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
sin2x-2
2
cos2x,則f(x)的最小正周期T和其圖象的一條對(duì)稱軸方程是( 。
A、2π,x=
π
8
B、2π,x=
8
C、π,x=
π
8
D、π,x=
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“φ=
π
2
”是“函數(shù)f(x)=sin(
1
2
x+φ)為偶函數(shù)”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:
2
x
<x;命題q:log2x2>1;則命題p是命題q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不必要也不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,求證:a2+b2≥2(2a-b)-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,是偶函數(shù)的是( 。
A、f(x)=
1
x
B、f(x)=x
C、f(x)=x2
D、f(x)=x+x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l經(jīng)過點(diǎn)A(4,2),B(6,3),則直線l的斜率為( 。
A、-
1
2
B、
1
2
C、-2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x<2},B={y|y=5x},則A∩B=( 。
A、{x|x<2}
B、{x|x>2}
C、{x|o≤x<2}
D、{x|0<x<2}

查看答案和解析>>

同步練習(xí)冊(cè)答案