【題目】2018年2月22日,在韓國平昌冬奧會短道速滑男子500米比賽中,中國選手武大靖以連續(xù)打破世界紀(jì)錄的優(yōu)異表現(xiàn),為中國代表隊(duì)奪得了本屆冬奧會的首枚金牌,也創(chuàng)造中國男子冰上競速項(xiàng)目在冬奧會金牌零的突破.某高校為調(diào)查該校學(xué)生在冬奧會期間累計(jì)觀看冬奧會的時間情況,收集了200位男生、100位女生累計(jì)觀看冬奧會時間的樣本數(shù)據(jù)(單位:小時).又在100位女生中隨機(jī)抽取20個人,已知這20位女生的數(shù)據(jù)莖葉圖如圖所示.

(1)將這20位女生的時間數(shù)據(jù)分成8組,分組區(qū)間分別為,,…,,,完成下圖的頻率分布直方圖;

(2)以(1)中的頻率作為概率,求1名女生觀看冬奧會時間不少于30小時的概率;

(3)以(1)中的頻率估計(jì)100位女生中累計(jì)觀看時間小于20個小時的人數(shù),已知200位男生中累計(jì)觀看時間小于20小時的男生有50人.請完成下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為“該校學(xué)生觀看冬奧會累計(jì)時間與性別有關(guān)”.

附:).

【答案】(1)見解析;(2);(3)見解析

【解析】分析:(1)根據(jù)莖葉圖,統(tǒng)計(jì)各組頻數(shù),計(jì)算各組頻率,完成頻率分布直方圖;(2)一名女生觀看冬奧會時間不少于30小時的概率等于觀看時間在兩組的頻率之和;(3)完成列聯(lián)表,計(jì)算,則有99%的把握認(rèn)為“該校學(xué)生觀看冬奧會累計(jì)時間與性別有關(guān)”.

詳解:

(1)由題意知樣本容量為20,頻率分布表如下:

頻率分布直方圖為:

(2)因?yàn)椋?)中的頻率為,

所以1名女生觀看冬奧會時間不少于30小時的概率為.

(3)因?yàn)椋?)中的頻率為,故可估計(jì)100位女生中累計(jì)觀看時間小于20小時的人數(shù)是.

所以累計(jì)觀看時間與性別列聯(lián)表如下:

結(jié)合列聯(lián)表可算得

所以,有99%的把握認(rèn)為“該校學(xué)生觀看冬奧會累計(jì)時間與性別有關(guān)”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“類函數(shù)”.

(1)已知函數(shù),試判斷是否為“類函數(shù)”?并說明理由;

(2)設(shè)是定義在上的“類函數(shù)”,求是實(shí)數(shù)的最小值;

(3)若 為其定義域上的“類函數(shù)”,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)若函數(shù)上為減函數(shù),求實(shí)數(shù)的最小值;

2)若存在,使成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列的首項(xiàng)是1,公比為3,等差數(shù)列的首項(xiàng)是,公差為1,把中的各項(xiàng)按如下規(guī)則依次插入到的每相鄰兩項(xiàng)之間,構(gòu)成新數(shù)列,,,,,,,,,…,即在兩項(xiàng)之間依次插入個項(xiàng),則__________.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,且,圓軸交于點(diǎn),為橢圓上的動點(diǎn),,面積最大值為.

(1)求圓與橢圓的方程;

(2)圓的切線交橢圓于點(diǎn),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面幾何中,研究三角形內(nèi)任意一點(diǎn)與三邊的關(guān)系時,有真命題:邊長為的正三角形內(nèi)任意一點(diǎn)到各邊的距離之和是定值。類比上述命題,請寫出關(guān)于正四面體內(nèi)任意一點(diǎn)與四個面的關(guān)系的一個真命題,并給出證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)記函數(shù)的極值點(diǎn)為,若,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買1臺機(jī)器,該種機(jī)器使用三年后即被淘汰.在購進(jìn)機(jī)器時,可以一次性額外購買幾次維修服務(wù),每次維修服務(wù)費(fèi)用200元,另外實(shí)際維修一次還需向維修人員支付小費(fèi),小費(fèi)每次50元.在機(jī)器使用期間,如果維修次數(shù)超過購機(jī)時購買的維修服務(wù)次數(shù),則每維修一次需支付維修服務(wù)費(fèi)用500元,無需支付小費(fèi).現(xiàn)需決策在購買機(jī)器時應(yīng)同時一次性購買幾次維修服務(wù),為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得下面統(tǒng)計(jì)表:

維修次數(shù)

8

9

10

11

12

頻數(shù)

10

20

30

30

10

x表示1臺機(jī)器在三年使用期內(nèi)的維修次數(shù),y表示1臺機(jī)器在維修上所需的費(fèi)用(單位:元),表示購機(jī)的同時購買的維修服務(wù)次數(shù).

(1)若=10,求yx的函數(shù)解析式;

(2)若要求“維修次數(shù)不大于的頻率不小于0.8,求n的最小值;

(3)假設(shè)這100臺機(jī)器在購機(jī)的同時每臺都購買10次維修服務(wù),或每臺都購買11次維修服務(wù),分別計(jì)算這100臺機(jī)器在維修上所需費(fèi)用的平均數(shù),以此作為決策依據(jù),購買1臺機(jī)器的同時應(yīng)購買10次還是11次維修服務(wù)?

查看答案和解析>>

同步練習(xí)冊答案