m |
n |
m |
3π |
4 |
m |
2 |
m |
n |
n |
n |
q |
π |
2 |
p |
C |
2 |
n |
p |
n |
n |
q |
n |
n |
p |
n |
m |
n |
n |
m |
3π |
4 |
m |
n |
m |
3π |
4 |
n |
|
n |
n |
q |
π |
2 |
n |
π |
3 |
2π |
3 |
n |
p |
C |
2 |
1+cos2A |
2 |
1+cos2C |
2 |
1 |
2 |
4π |
3 |
1 |
2 |
1 |
2 |
| ||
2 |
1 |
2 |
π |
3 |
2π |
3 |
π |
3 |
π |
3 |
5π |
3 |
1 |
2 |
1 |
2 |
π |
3 |
5 |
4 |
n |
p |
| ||
2 |
| ||
2 |
科目:高中數學 來源: 題型:
(09年臨沂一模理)(12分)
已知向量m=(,1),n=(,)。
(I) 若m•n=1,求的值;
(II) 記f(x)=m•n,在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足
(2a-c)cosB=bcosC,求函數f(A)的取值范圍。
查看答案和解析>>
科目:高中數學 來源:不詳 題型:解答題
m |
n |
m |
3π |
4 |
m |
2 |
m |
n |
n |
n |
q |
π |
2 |
p |
C |
2 |
n |
p |
查看答案和解析>>
科目:高中數學 來源: 題型:
(1)求函數f(x)的單調區(qū)間和最小值;
(2)當b>0時,求證:bb≥(其中e=2.718 28…是自然對數的底數);
(3)若a>0,b>0,證明f(a)+(a+b)ln2≥f(a+b)-f(b).
(文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且m∥n,把其中x,y所滿足的關系式記為y=f(x).若f′(x)為f(x)的導函數,F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函數.
(1)求和c的值.
(2)求函數f(x)的單調遞減區(qū)間(用字母a表示).
(3)當a=2時,設0<t<4且t≠2,曲線y=f(x)在點A(t,f(t))處的切線與曲線y=f(x)相交于點B(m,f(m))(A與B不重合),直線x=t與y=f(m)相交于點C,△ABC的面積為S,試用t表示△ABC的面積S(t),并求S(t)的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com