已知函數(shù).

(Ⅰ)若時(shí),,求的最小值;

(Ⅱ)設(shè)數(shù)列的通項(xiàng),證明:.

 

【答案】

(Ⅰ)(Ⅱ)見解析

【解析】(Ⅰ)由已知,,.

,則當(dāng)時(shí),,所以.

,則當(dāng)時(shí),,所以當(dāng)時(shí),.

綜上,的最小值是.

(Ⅱ)證明:令.由(Ⅰ)知,當(dāng)時(shí),,

.

,則.

于是

.

所以.

(1)通過求導(dǎo)的方法研究函數(shù)的單調(diào)性,進(jìn)而判斷滿足條件的的范圍,確定其最小值;(2)借助第一問的結(jié)論,得到不等式進(jìn)而構(gòu)造達(dá)到證明不等式的目的.

【考點(diǎn)定位】本題考查導(dǎo)數(shù)的應(yīng)用與不等式的證明,考查學(xué)生的分類討論思想和利用構(gòu)造法證明不等式的解題能力.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log
13
x
,若f(a3)+f(b3)=6,則f(ab)的值等于
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)、g(x)的定義域分別為M,N,且M⊆N,若對任意的x∈M,都有g(shù)(x)=f(x),則稱g(x)是f(x)的“拓展函數(shù)”.已知函數(shù)f(x)=
1
3
log2x
,若g(x)是f(x)的“拓展函數(shù)”,且g(x)是偶函數(shù),則符合條件的一個(gè)g(x)的解析式是
g(x)=
1
3
log2|x|
(其它符合條件的函數(shù)也可)
g(x)=
1
3
log2|x|
(其它符合條件的函數(shù)也可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分16分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分8分.

已知函數(shù)

(1)若,求的值;

(2)若對于恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆黑龍江省海林市高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),

(1)若曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線,求,的值;

(2)當(dāng)時(shí),若函數(shù)在區(qū)間[,2]上的最大值為28,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省如東縣高三12月四校聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)

已知函數(shù)

(1)若上的最大值為,求實(shí)數(shù)的值;

(2)若對任意,都有恒成立,求實(shí)數(shù)的取值范圍;

(3)在(1)的條件下,設(shè),對任意給定的正實(shí)數(shù),曲線 上是否存在兩點(diǎn),使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請說明理由。

 

查看答案和解析>>

同步練習(xí)冊答案