若數(shù)列滿足,,則此數(shù)列是                     
A.等差數(shù)列B.等比數(shù)列
C.既是等差數(shù)列又是等比數(shù)列D.既非等差數(shù)列又非等比數(shù)列
A

分析:根據(jù)題意可得:an="(" ? ? )?a1=n,再利用等差數(shù)列的定義進行證明即可.
解:因為,
所以=,===,
所以an="(" ? ? )?a1=n,
所以an=n,an-1=n-1,所以an-an-1=1,所以數(shù)列{an}是等差數(shù)列.
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)設(shè)集合W由滿足下列兩個條件的數(shù)列構(gòu)成:

②存在實數(shù)M,使(n為正整數(shù))
(I)在只有5項的有限數(shù)列
;試判斷數(shù)列是否為集合W的元素;
(II)設(shè)是各項為正的等比數(shù)列,是其前n項和,證明數(shù)列;并寫出M的取值范圍;
(III)設(shè)數(shù)列且對滿足條件的M的最小值M0,都有.
求證:數(shù)列單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)Sn為等差數(shù)列{an}的前n項和.(nN*).
(Ⅰ)若數(shù)列{an}單調(diào)遞增,且a2a1、a5的等比中項,證明:
(Ⅱ)設(shè){an}的首項為a1,公差為d,且,問是否存在正常數(shù)c,使對任意自然數(shù)n都成立,若存在,求出c(用d表示);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列具有性質(zhì)P:對任意,
兩數(shù)中至少有一個是該數(shù)列中的一項,現(xiàn)給出以下四個命題:
①數(shù)列0,1,3具有性質(zhì)P;
②數(shù)列0,2,4,6具有性質(zhì)P;
③若數(shù)列A具有性質(zhì)P,則;
④若數(shù)列具有性質(zhì)P,則
其中真命題有
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是定義在上恒不為零的函數(shù),對任意的實數(shù),都有,若,(),則數(shù)列的前項和的最小值是( )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有窮數(shù)列的前項和,現(xiàn)從中抽取某一項(不包括首項、末項)后,余下的項的平均值是79. ①求數(shù)列的通項;②求這個數(shù)列的項數(shù),抽取的是第幾項?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),正實數(shù)是公差為正數(shù)的等差數(shù)列,且滿足。若實數(shù)是方程的一個解,那么下列四個判斷:
;②中有可能成立的個數(shù)為                  (   )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前n項和為,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在等比數(shù)列中,的范圍.

查看答案和解析>>

同步練習(xí)冊答案