如圖,棱柱ABCD—A1B1C1D1的所有棱長(zhǎng)都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°。

   (Ⅰ)證明:BD⊥AA1;

   (Ⅱ)求二面角D—A1A—C的平面角的余弦值;

   (Ⅲ)在直線CC1上是否存在點(diǎn)P,使BP//平面DA1C1?若存在,求出點(diǎn)P的位置;若不存在,說明理由。

(Ⅰ)見解析

       (Ⅱ)

       (Ⅲ)見解析


解析:

連接BD交AC于O,則BD⊥AC,

連接A1O

在△AA1O中,AA1=2,AO=1,

∠A1AO=60°

∴A1O2=AA12+AO2-2AA1·Aocos60°=3

∴AO2+A1O2=A12

∴A1O⊥AO,由于平面AA1C1C⊥

平面ABCD,

所以A1O⊥底面ABCD

∴以O(shè)B、OC、OA1所在直線為x軸、y軸、z軸建立如圖所示空間直角坐標(biāo)系,則A(0,-1,0),B(,0,0),C(0,1,0),D(-,0,0),A1(0,0,

 
……………………2分

(Ⅰ)由于

∴BD⊥AA1……………………4分

  (Ⅱ)由于OB⊥平面AA1C1C

∴平面AA1C1C的法向量

設(shè)⊥平面AA1D

得到……………………6分

所以二面角D—A1A—C的平面角的余弦值是……………………8分

(Ⅲ)假設(shè)在直線CC1上存在點(diǎn)P,使BP//平面DA1C1

設(shè)

……………………9分

設(shè)

設(shè)

得到……………………10分

又因?yàn)?img width=37 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/24/372224.gif">平面DA1C1

·

即點(diǎn)P在C1C的延長(zhǎng)線上且使C1C=CP……………………12分

法二:在A1作A1O⊥AC于點(diǎn)O,由于平面AA1C??1C⊥平面

ABCD,由面面垂直的性質(zhì)定理知,A1O⊥平面ABCD,

又底面為菱形,所以AC⊥BD

 

……………………4分

(Ⅱ)在△AA1O中,A1A=2,∠A1AO=60°

∴AO=AA1·cos60°=1

所以O(shè)是AC的中點(diǎn),由于底面ABCD為菱形,所以

O也是BD中點(diǎn)

由(Ⅰ)可知DO⊥平面AA1C

過O作OE⊥AA1于E點(diǎn),連接OE,則AA1⊥DE

則∠DEO為二面角D—AA1—C的平面角

……………………6分

在菱形ABCD中,AB=2,∠ABC=60°

∴AC=AB=BC=2

∴AO=1,DO=

在Rt△AEO中,OE=OA·sin∠EAO=

DE=

∴cos∠DEO=

∴二面角D—A1A—C的平面角的余弦值是……………………8分

(Ⅲ)存在這樣的點(diǎn)P

連接B1C,因?yàn)锳1B1ABDC

∴四邊形A1B1CD為平行四邊形。

∴A1D//B1C

在C1C的延長(zhǎng)線上取點(diǎn)P,使C1C=CP,連接BP……………………10分

因B??1??BCC1,……………………12分

∴BB1CP

∴四邊形BB1CP為平行四邊形

則BP//B1C

∴BP//A1D

∴BP//平面DA1C1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,棱柱ABCD-A1B1C1D1的所有棱長(zhǎng)都等于2,∠ABC和∠A1B1C1均為60°,平面AA1C1C⊥平面ABCD.
(I)求證:BD⊥AA1
(II)求二面角D-AA1-C的余弦值;
(III)在直線CC1上是否存在點(diǎn)P,使BP∥平面DA1C1,若存在,求出點(diǎn)P的位置,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖四棱柱ABCD-A1B1C1D1的底面ABCD為正方形,側(cè)棱與底邊長(zhǎng)均為a,且∠A1AD=∠A1AB=60°.
①求證四棱錐A1-ABCD為正四棱錐;
②求側(cè)面A1ABB1與截面B1BDD1的銳二面角大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

17、如圖,棱柱ABCD-A1B1C1D1的底面ABCD為菱形,AC∩BD=O,側(cè)棱AA1⊥BD,點(diǎn)F為DC1的中點(diǎn).
(I) 證明:OF∥平面BCC1B1
(II)證明:平面DBC1⊥平面ACC1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,棱柱ABCD-A1B1C1D1的底面ABCD為菱形,平面AA1C1C⊥平面ABCD.?
(1)證明:BD⊥AA1;?
(2)證明:平面AB1C∥平面DA1C1
(3)在直線CC1上是否存在點(diǎn)P,使BP∥平面DA1C1?若存在,求出點(diǎn)P的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,棱柱ABCD-A1B1C1D1的所有棱長(zhǎng)都等于2,∠ABC=60°,平面AA1CC1⊥平面ABCD,∠A1AC=60°
(1)求二面角D-A1A-C的大小.
(2)求點(diǎn)B1到平面A1ADD1的距離
(3)在直線CC1上是否存在P點(diǎn),使BP∥平面DA1C1,若存在,求出點(diǎn)P的位置;若不存在,說出理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案