已知數(shù)列{an}中,
a
 
1
=
1
4
,an=2-
1
an-1
(n≥2,n∈N*)
.若數(shù)列{bn}滿足bn=
1
an-1
(n∈N+)

(1)證明:數(shù)列{bn}是等差數(shù)列,并寫出{bn}的通項公式;
(2)求數(shù)列{an}的通項公式及數(shù)列{an}中的最大項與最小項.
考點:數(shù)列遞推式,數(shù)列的函數(shù)特性
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知得
1
an-1
-
1
an-1-1
=1,b1=
1
a1-1
=-
4
3
,由此能證明數(shù)列{bn}是以-
4
3
為首項,以1為公差的等差數(shù)列,從而能求出{bn}的通項公式.
(2)由bn=n-
7
3
=
1
an-1
,得an=1+
1
n-
7
3
=1+
3
3n-7
,n∈N*,當(dāng)n≥3時,數(shù)列{an}是遞減數(shù)列,且an>1,由此求出數(shù)列的前3項,從而能求出數(shù)列{an}中的最大項和最小項.
解答: (1)證明:∵數(shù)列{an}中,
a
 
1
=
1
4
,an=2-
1
an-1
(n≥2,n∈N*)
,
an-1=
an-1-1
an-1
,∴
1
an-1
=
an-1-1+1
an-1-1
=1+
1
an-1-1

1
an-1
-
1
an-1-1
=1,
∴數(shù)列{bn}是以1為公差的等差數(shù)列,
∵bn=
1
an-1
,∴bn-bn-1=1,
又∵a1=
1
4
,∴b1=
1
a1-1
=-
4
3
,
∴數(shù)列{bn}是以-
4
3
為首項,以1為公差的等差數(shù)列,
bn=-
4
3
+(n-1)×1
=n-
7
3
.n∈N*
(2)解:∵bn=n-
7
3
=
1
an-1
,∴an=1+
1
n-
7
3
=1+
3
3n-7
,n∈N*
當(dāng)n≥3時,數(shù)列{an}是遞減數(shù)列,且an>1,
列舉a1=1+
3
3-7
=
1
4
,
a2=1+
3
6-7
=-2,
a3=1+
3
9-7
=
5
2
,
∴數(shù)列{an}中的最大項為a3=
5
2
,最小項為a2=-2.
點評:本題考查數(shù)列是等差數(shù)列的證明,考查數(shù)列{bn}的通項公式的求法,考查數(shù)列{an}的通項公式及數(shù)列{an}中的最大項與最小項的求法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
①分別和兩條異面直線均相交的兩條直線一定是異面直線
②一個平面內(nèi)任意一點到另一個平面的距離均相等,那么這平面平行
③三棱錐的四個面可以都是直角三角形
④過兩異面直線外一點能作且只能作出一條直線和這兩條異面直線同時相交
⑤已知平面α,直線a和直線b,且a∩α=a,b⊥a,則b⊥α
其中正確命題的序號是
 
(請?zhí)钌纤心阏J為正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足xy=4,則x2+4y2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD和矩形ACEF所在平面互相垂直,AB=
2
,AF=1,M是線段EF的中點.
(1)求證:AM∥平面BDE;
(2)在線段AC上是否存在一點P,使直線PF與AD所成角為60°?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
①經(jīng)過空間任意一點都可作唯一一個平面與兩條已知異面直線都平行;
②已知平面α,直線a和直線b,且a∩α=A,b⊥a,則b⊥α;
③有兩個側(cè)面都垂直于底面的四棱柱為直四棱柱;
④三棱錐中若有兩組對棱互相垂直,則第三組對棱也一定互相垂直;
⑤一個二面角的兩個半平面分別垂直于另一個二面角的兩個半平面,則這兩個角的平面角相等或互補,
其中正確命題的序號是
 
(請?zhí)钌纤心阏J為正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與直線y=5相切,且與圓x2+y2-2x+2y-2=0外切的面積最小的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若M為圓C:x2+y2+6x-4y+12=0上的動點,拋物線E:y2=4x的準(zhǔn)線為l,點P是拋物線E上的任意一點,記點P到l的距離為d,則d+|PM|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若復(fù)數(shù)z=
1-i
1+i
,則z為( 。
A、iB、-iC、2iD、1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們把離心率為e=
5
+1
2
的雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)稱為黃金雙曲線.如圖給出以下幾個說法中正確的是( 。
①雙曲線x2-
2y2
5
+1
=1是黃金雙曲線;
②若b2=ac,則該雙曲線是黃金雙曲線;
③若∠F1B1A2=90°,則該雙曲線是黃金雙曲線;
④若∠MON=90°,則該雙曲線是黃金雙曲線.
A、①②B、①③
C、①③④D、①②③④

查看答案和解析>>

同步練習(xí)冊答案