證明1+
1
2
+
1
3
+
1
4
+…+
1
2n-1
n
2
(n∈N*),假設(shè)n=k時(shí)成立,當(dāng)n=k+1時(shí),左端增加的項(xiàng)數(shù)是(  )
A、1項(xiàng)
B、k-1項(xiàng)
C、k項(xiàng)
D、2k項(xiàng)
分析:首先分析題目證明不等式1+
1
2
+
1
3
+
1
4
+…+
1
2n-1
n
2
,假設(shè)n=k時(shí)成立,求當(dāng)n=k+1時(shí),左端增加的項(xiàng)數(shù).故可以分別把n=k+1,n=k代入不等式左邊,使它們相減即可求出項(xiàng)數(shù).
解答:解:當(dāng)n=k時(shí)不等式為:1+
1
2
+
1
3
+
1
4
+…+
1
2k-1
k
2
成立
當(dāng)n=k+1時(shí)不等式左邊為1+
1
2
+
1
3
+
1
4
+…+
1
2k+1-1

則左邊增加2k+1-2k=2k項(xiàng).
故選D.
點(diǎn)評(píng):此題主要考查用數(shù)學(xué)歸納法證明不等式的問題,屬于概念性問題,計(jì)算量小,屬于基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明1+
1
2
+
1
3
+…+
1
2n-1
<n
(n∈N+,n>1)時(shí),第一步應(yīng)驗(yàn)證不等式( 。
A、1+
1
2
<2
B、1+
1
2
+
1
3
<2
C、1+
1
2
+
1
3
<3
D、1+
1
2
+
1
3
+
1
4
<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明1+
1
2
+
1
3
++
1
2n-1
<n(n∈N+,n>1)
,第二步證明從k到k+1,左端增加的項(xiàng)數(shù)為( 。
A、2k-1
B、2k
C、2k-1
D、2k+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

利用數(shù)學(xué)歸納法證明“1+
1
2
+
1
3
+…+
1
2n
=p(n)
”,從n=k推導(dǎo)n=k+1時(shí)原等式的左邊應(yīng)增加的項(xiàng)數(shù)是
2k
2k
項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

假設(shè)n=k時(shí)成立,當(dāng)n=k+1時(shí),證明1+
1
2
+
1
3
+
1
4
+…+
1
2n-1
n
2
(n∈N+)
,左端增加的項(xiàng)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明1+
1
2
+
1
3
+…+
1
2n-1
<n
,其中n>1且n∈N*,在驗(yàn)證n=2時(shí),左式是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案