已知是實數(shù),函數(shù)。

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè)在區(qū)間上的最小值。

(i)寫出的表達(dá)式;

(ii)求的取值范圍,使得

本題主要考查函數(shù)的性質(zhì)、求導(dǎo)、導(dǎo)數(shù)的應(yīng)用等基礎(chǔ)知識,同時考查分類討論思想以及綜合運用所學(xué)知識分析問題和解決問題的能力.

(Ⅰ)解:函數(shù)的定義域為,

).

,則,

有單調(diào)遞增區(qū)間

,令,得,

當(dāng)時,

當(dāng)時,

有單調(diào)遞減區(qū)間,單調(diào)遞增區(qū)間

(Ⅱ)解:(i)若上單調(diào)遞增,

所以

上單調(diào)遞減,在上單調(diào)遞增,

所以

,上單調(diào)遞減,

所以

綜上所述,

(ii)令

,無解.

,解得

,解得

的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(07年廣東卷) (l4分)已知是實數(shù),函數(shù).如果函數(shù)在區(qū)間上有零點.求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分l4分)

已知是實數(shù),函數(shù).如果函數(shù)

在區(qū)間上有零點.求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇省高三開學(xué)檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知是實數(shù),函數(shù),分別是的導(dǎo)函數(shù),若在區(qū)間上恒成立,則稱在區(qū)間上單調(diào)性一致.

(Ⅰ)設(shè),若函數(shù)在區(qū)間上單調(diào)性一致,求實數(shù)的取值范圍;

(Ⅱ)設(shè),若函數(shù)在以為端點的開區(qū)間上單調(diào)性一致,求的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省泰安市高三12月質(zhì)檢文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知是實數(shù),函數(shù)

(Ⅰ)若,求的值及曲線在點處的切線方程;

(Ⅱ)求在區(qū)間上的最大值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省高三第一次質(zhì)量檢測理科數(shù)學(xué)卷 題型:解答題

(滿分12分)

已知是實數(shù),函數(shù)

(Ⅰ)若,求的值及曲線在點處的切線方程;

(Ⅱ)求在區(qū)間上的最大值.

 

查看答案和解析>>

同步練習(xí)冊答案