(本題滿分14分)

曲線C上任一點到點,的距離的和為12, Cx軸的負半軸、正半軸依次交于AB兩點,點PC上,且位于x軸上方,

(Ⅰ)求曲線C的方程;

(Ⅱ)求點P的坐標;

(Ⅲ)以曲線C的中心為圓心,AB為直徑作圓O,過點P的直線l截圓O的弦MN長為,求直線l的方程.

解:(Ⅰ)設G是曲線C上任一點,依題意,    ………… 1分

∴曲線C是以E、F為焦點的橢圓,且橢圓的長半軸a=6,半焦距c=4,

∴短半軸b=, ………………………………………………………… 3分

∴所求的橢圓方程為;……………………………………………………… 4分

(Ⅱ)由已知,,設點P的坐標為,則

由已知得 …………………… 6分

,解之得,………………………………………… 7分

由于,所以只能取,于是,

所以點P的坐標為;………………………………………………………… 8分

(Ⅲ)圓O的圓心為(0,0),半徑為6,其方程為,………………… 9分

若過P的直線lx軸垂直,則直線l的方程為,這時,圓心到l的距離,

,符合題意;…………………… 10分

若過P的直線l不與x軸垂直,設其斜率為k,則直線l的方程為

,這時,圓心到l的距離 

,…………………………… 12分

化簡得,,∴,

∴直線l的方程為,         ……………………………… 13分

綜上,所求的直線l的方程為     ……………… 14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標與參數(shù)方程在極坐標系中,直線l 的極坐標方程為θ=
π
3
(ρ∈R ),以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點P的直角坐標.
B.選修4-5:不等式選講
設實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABEAEEBBC=2,上的點,且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期期中考試數(shù)學 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實數(shù)m的值

(Ⅱ)若ACRB,求實數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期第三次月考理科數(shù)學卷 題型:解答題

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足。

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點,使 (O是坐標原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江西省高一第二學期入學考試數(shù)學 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習冊答案