【題目】(1)六個(gè)從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有幾種?

(2)把5件不同產(chǎn)品擺成一排,若產(chǎn)品與產(chǎn)品相鄰,且產(chǎn)品與產(chǎn)品不相鄰,則不同的擺法有幾種?

(3)某次聯(lián)歡會(huì)要安排3個(gè)歌舞類節(jié)目、2個(gè)小品類節(jié)目和1個(gè)相聲類節(jié)目的演出順序,則同類節(jié)目不相鄰的排法有幾種?

【答案】(1)216(2)36(3)120

【解析】分析:(1)分兩種情況討論甲在最左端時(shí),有,當(dāng)甲不在最左端時(shí),有(種)排法由分類計(jì)數(shù)加法原理可得結(jié)果;(2)分三步:將看成一個(gè)整體,將于剩余的2件產(chǎn)品全排列,3個(gè)空位可選,根據(jù)分步計(jì)數(shù)乘法原理可得結(jié)果;(3)表示歌舞類節(jié)目,小品類節(jié)目,相聲類節(jié)目,利用枚舉法可得共有,每一種排法種的三個(gè),兩個(gè)可以交換位置,故總的排法為.

詳解(1)當(dāng)甲在最左端時(shí),有;當(dāng)甲不在最左端時(shí),乙必須在最左端,且甲也不在最右端,有(種)排法,共計(jì)(種)排法.

(2)根據(jù)題意,分3步進(jìn)行分析:

產(chǎn)品與產(chǎn)品相鄰,將看成一個(gè)整體,考慮之間的順序,有種情況,

于剩余的2件產(chǎn)品全排列,有種情況,

產(chǎn)品與產(chǎn)品不相鄰,有3個(gè)空位可選,即有3種情況,共有種;

(3)法一:用表示歌舞類節(jié)目,小品類節(jié)目,相聲類節(jié)目,則可以枚舉出下列10種:

每一種排法種的三個(gè),兩個(gè)可以交換位置,故總的排法為種.

法二:分兩步進(jìn)行:(1)先將3個(gè)歌曲進(jìn)行全排,其排法有種;(2)將小品與相聲插入將歌曲分開(kāi),若兩歌舞之間只有一個(gè)其他節(jié)目,其插法有種.若兩歌舞之間有兩個(gè)其他節(jié)目時(shí)插法有種.所以由計(jì)數(shù)原理可得節(jié)目的排法共有(種).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某程序框圖如圖所示,該程序運(yùn)行后輸出的S的值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列五個(gè)命題:

①函數(shù)fx=2a2x-1-1的圖象過(guò)定點(diǎn)(,-1);

②已知函數(shù)fx)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),fx=xx+1),若fa=-2則實(shí)數(shù)a=-12

③若loga1,則a的取值范圍是(,1);

④若對(duì)于任意xRfx=f4-x)成立,則fx)圖象關(guān)于直線x=2對(duì)稱;

⑤對(duì)于函數(shù)fx=lnx,其定義域內(nèi)任意x1x2都滿足f

其中所有正確命題的序號(hào)是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的標(biāo)準(zhǔn)方程為,為圓上的動(dòng)點(diǎn),直線的方程為,動(dòng)點(diǎn)在直線上.

1)求的最小值,并求此時(shí)點(diǎn)的坐標(biāo);

2)若點(diǎn)的坐標(biāo)為,過(guò)作直線與圓交于兩點(diǎn),當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某植物園準(zhǔn)備建一個(gè)五邊形區(qū)域的盆栽館,三角形ABE為盆裁展示區(qū),沿AB、AE修建觀賞長(zhǎng)廊,四邊形BCDE是盆栽養(yǎng)護(hù)區(qū),若BCD=∠CDE=120°,∠BAE=60°,DE=3BC=3CD=米。

(1)求兩區(qū)域邊界BE的長(zhǎng)度;

(2)若區(qū)域ABE為銳角三角形,求觀賞長(zhǎng)廊總長(zhǎng)度AB+AE的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)其圖像的一個(gè)對(duì)稱中心是的圖像向左平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖像。

(1)求函數(shù)的解析式;

(2)若對(duì)任意當(dāng)時(shí),都有求實(shí)數(shù)的最大值;

(3)若對(duì)任意實(shí)數(shù)上與直線的交點(diǎn)個(gè)數(shù)不少于6個(gè)且不多于10個(gè),求正實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的偶函數(shù)滿足,當(dāng)時(shí),,設(shè)函數(shù),則的圖象所有交點(diǎn)的橫坐標(biāo)之和為( ).

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一塊大型的廣告宣傳版面,其形狀是右圖所示的直角梯形.某廠家因產(chǎn)品宣傳的需要,擬投資規(guī)劃出一塊區(qū)域(圖中陰影部分)為產(chǎn)品做廣告,形狀為直角梯形(點(diǎn)在曲線段上,點(diǎn)在線段上).已知, 其中曲線段是以為頂點(diǎn), 為對(duì)稱軸的拋物線的一部分.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,分別求出曲線段與線段的方程;

(2)求該廠家廣告區(qū)域的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地?cái)M在一個(gè)U形水面PABQ(∠A=B=90°)上修一條堤壩(EAP上,NBQ上),圍出一個(gè)封閉區(qū)域EABN,用以種植水生植物.為了美觀起見(jiàn),決定從AB上點(diǎn)M處分別向點(diǎn)E,N2條分隔線ME,MN,將所圍區(qū)域分成3個(gè)部分(如圖),每部分種植不同的水生植物.已知AB=a,EM=BM,∠MEN=90°,設(shè)所拉分隔線總長(zhǎng)度為l

1)設(shè)∠AME=2θ,求用θ表示的l函數(shù)表達(dá)式,并寫(xiě)出定義域;

2)求l的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案