【題目】為了緩解城市交通壓力,某市市政府在市區(qū)一主要交通干道修建高架橋,兩端的橋墩現(xiàn)已建好,已知這兩橋墩相距m米,“余下的工程”只需建兩端橋墩之間的橋面和橋墩.經(jīng)測算,一個橋墩的工程費用為256萬元;距離為x米的相鄰兩墩之間的橋面工程費用為(2+)x萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點,且不考慮其他因素.記“余下工程”的費用為y萬元.
(1)試寫出工程費用y關(guān)于x的函數(shù)關(guān)系式;
(2)當m=640米時,需新建多少個橋墩才能使工程費用y最?并求出其最小值.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項和為Sn,已知(a4-1)3+2 016(a4-1)=1,(a2 013-1)3+2 016·(a2 013-1)=-1,則下列結(jié)論正確的是( )
A. S2 016=-2 016,a2 013>a4
B. S2 016=2 016,a2 013>a4
C. S2 016=-2 016,a2 013<a4
D. S2 016=2 016,a2 013<a4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知p:“x0∈(-1,1),x-x0-m=0(m∈R)”是正確的,設(shè)實數(shù)m的取值集合為M.
(1)求集合M;
(2)設(shè)關(guān)于x的不等式(x-a)(x+a-2)<0(a∈R)的解集為N,若“x∈M”是“x∈N”的充分條件,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來隨著我國在教育利研上的投入不斷加大,科學技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.伴隨著國內(nèi)市場增速放緩,國內(nèi)確實力企業(yè)紛紛進行海外布局,第二輪企業(yè)出海潮到來,如在智能手機行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機公司一直默默拓展海外市場,在海外共設(shè)30多個分支機構(gòu),需要國內(nèi)公司外派大量70后、80后中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派上作的態(tài)度,按分層抽樣的方式從70后利80后的員工中隨機調(diào)查了100位,得到數(shù)據(jù)如下表:
愿意被外派 | 不愿意被外派 | 合計 | |
70后 | 20 | 20 | 40 |
80后 | 40 | 20 | 60 |
合計 | 60 | 40 | 100 |
(1)根據(jù)凋查的數(shù)據(jù),是否有的把握認為“是否愿意被外派與年齡有關(guān)”,并說明理由;
(2)該公司參觀駐海外分支機構(gòu)的交流體驗活動,擬安排4名參與調(diào)查的70后員工參加,70后的員工中有愿意被外派的3人和不愿意被外派的3人報名參加,現(xiàn)采用隨機抽樣方法從報名的員工中選4人,求選到愿意被外派人數(shù)不少于不愿意被外派人數(shù)的概率.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某社區(qū)為了解轄區(qū)住戶中離退休老人每天的平均戶外“活動時間”,從轄區(qū)住戶的離退休老人中隨機抽取了100位老人進行調(diào)查,獲得了每人每天的平均戶外“活動時間”(單位:小時),活動時間按照、、…、從少到多分成9組,制成樣本的頻率分布直方圖如圖所示.
(1)求圖中的值;
(2)估計該社區(qū)住戶中離退休老人每天的平均戶外“活動時間”的中位數(shù);
(3)在、這兩組中采用分層抽樣抽取7人,再從這7人中隨機抽取2人,求抽取的兩人恰好都在同一個組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左右焦點分別為, 若橢圓上一點滿足,且橢圓過點,過點的直線與橢圓交于兩點.
(1)求橢圓的方程;
(2)若點是點在軸上的垂足,延長交橢圓于,求證: 三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知表1和表2是某年部分日期的天安門廣場升旗時刻表:
表1:某年部分日期的天安門廣場升旗時刻表
日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:11 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:50 | 12月20日 | 7:31 |
表2:某年1月部分日期的天安門廣場升旗時刻表
日期 | 升旗時刻 | 日期 | 升旗時刻 | 日期 | 升旗時刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15 | 2月19日 | 7:02 | 2月28日 | 6:49 |
(1)從表1的日期中隨機選出一天,試估計這一天的升旗時刻早于7:00的概率;
(2)甲、乙二人各自從表2的日期中隨機選擇一天觀看升旗,且兩人的選擇相互獨立,記為這兩人中觀看升旗的時刻早于7:00的人數(shù),求的 分布列和數(shù)學期望;
(3)將表1和表2的升旗時刻化為分數(shù)后作為樣本數(shù)據(jù)(如7:31化為),記表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為,表1和表2中所有升旗時刻對應(yīng)數(shù)據(jù)的方差為,判斷與的大。ㄖ恍鑼懗鼋Y(jié)論).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,直線經(jīng)過的右頂點和上頂點.
(1)求橢圓的方程;
(2)設(shè)橢圓的右焦點為,過點作斜率不為的直線交橢圓于兩點,求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).
(1)求他們選擇的項目所屬類別互不相同的概率;
(2)記ξ為3人中選擇的項目屬于基礎(chǔ)設(shè)施工程或產(chǎn)業(yè)建設(shè)工程的人數(shù),求ξ的分布列及均值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com