(本題滿分8分)
求經(jīng)過直線L1:3x + 4y – 5 = 0與直線L2:2x – 3y + 8 = 0的交點M,且與直線2x + y + 5 = 0平行的直線方程。

解:解得 ………3分
所以交點(-1,2)………4分
∵所求直線與直線2x + y + 5 = 0平行,∴  ………6分
∴直線方程為………8分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)某公司“咨詢熱線”電話共有10路外線,經(jīng)長期統(tǒng)計發(fā)現(xiàn),在8點至10點這段時間內(nèi),英才苑外線電話同時打入情況如下表所示:

電話同時打入數(shù)ξ

0

1

2

3

4

5

6

7

8

9

10

概率P

0.13

0.35

0.27

0.14

0.08

0.02

0.01

0

0

0

0

  (1)若這段時間內(nèi),公司只安排了2位接線員(一個接線員一次只能接一個電話).

      ①求至少一路電話不能一次接通的概率;

      ②在一周五個工作日中,如果有三個工作日的這一時間內(nèi)至少一路電話不能一次接通,那么公司的形象將受到損害,現(xiàn)用至少一路電話一次不能接通的概率表示公司形象的“損害度”,求這種情況下公司形象的“損害度”;(2)求一周五個工作日的這一時間內(nèi),同時打入的電話數(shù)ξ的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

現(xiàn)有變換公式可把平面直角坐標(biāo)系上的一點變換到這一平面上的一點.

(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個焦點經(jīng)變換公式變換后得到的點的坐標(biāo);

(2) 若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點. 求(1)中的橢圓在變換下的所有不動點的坐標(biāo);

(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動點的存在情況和個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)

定義變換可把平面直角坐標(biāo)系上的點變換到這一平面上的點.特別地,若曲線上一點經(jīng)變換公式變換后得到的點與點重合,則稱點是曲線在變換下的不動點.

(1)若橢圓的中心為坐標(biāo)原點,焦點在軸上,且焦距為,長軸頂點和短軸頂點間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程. 并求出當(dāng)時,其兩個焦點、經(jīng)變換公式變換后得到的點的坐標(biāo);

(2)當(dāng)時,求(1)中的橢圓在變換下的所有不動點的坐標(biāo);

(3)試探究:中心為坐標(biāo)原點、對稱軸為坐標(biāo)軸的雙曲線在變換

)下的不動點的存在情況和個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分15分)由于衛(wèi)生的要求游泳池要經(jīng)常換水(進(jìn)一些干凈的水同時放掉一些臟水), 游泳池的水深經(jīng)常變化,已知泰州某浴場的水深(米)是時間,(單位小時)的函數(shù),記作,下表是某日各時的水深數(shù)據(jù)

t(時)

0

3

6

9

12

15

18

21

24

y(米)

2 5

2 0

15

20

249

2

151

199

2 5

經(jīng)長期觀測的曲線可近似地看成函數(shù) 

(Ⅰ)根據(jù)以上數(shù)據(jù),求出函數(shù)的最小正周期T,振幅A及函數(shù)表達(dá)式;

(Ⅱ)依據(jù)規(guī)定,當(dāng)水深大于2米時才對游泳愛好者開放,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8  00至晚上20  00之間,有多少時間可供游泳愛好者進(jìn)行運動 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省高三1月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號,某月的產(chǎn)量如下表(單位:輛);

 

轎車A

轎車B

轎車C

舒適型

100

150

z

標(biāo)準(zhǔn)型

300

450

600

按類型用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛.

(Ⅰ)求z的值;

(Ⅱ)用分層抽樣的方法在C類轎車中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率;

(Ⅲ)用隨機(jī)抽樣的方法從B類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把這8輛轎車的得分看成一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5的概率

 

查看答案和解析>>

同步練習(xí)冊答案