(本小題滿分14分)

已知函數(shù)的極值點(diǎn)為

(Ⅰ)求實(shí)數(shù),的值;

(Ⅱ)試討論方程根的個(gè)數(shù);

(Ⅲ)設(shè),斜率為的直線與曲線交于

兩點(diǎn),試比較的大小,并給予證明.

 

 

【答案】

解:(Ⅰ),……………… 1分

的極值點(diǎn)為

的根為,

解得                   ……………………3分

(Ⅱ)由

,設(shè), .

,      ………………5分

當(dāng)變化時(shí),的變化情況如下表:

+

單調(diào)遞減

單調(diào)遞增

 

 

 

 

 

 

由此得,函數(shù)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.…6分

,

且當(dāng)正向趨近于0時(shí),趨近于,

當(dāng)趨近于時(shí),趨近于. ………………7分

∴當(dāng)時(shí),方程只有一解;

當(dāng)時(shí),方程有兩解;

當(dāng)時(shí),方程無解.                         ………………9分

(Ⅲ).                                   ……………10分

證明:由(Ⅰ)得,

,.

要證,即證,

只需證,(因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052311523128125100/SYS201205231155380156121891_DA.files/image031.png">)

即證.只需證.(*)…………………12分

設(shè) ,

,

單調(diào)遞增,,

∴不等式(*)成立.

.                                 ………………… 14分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡(jiǎn)f(x)的表達(dá)式,并求f(x)的最小正周期;
(II)當(dāng)x∈[0,
π
2
]  時(shí),求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)設(shè)橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對(duì)一應(yīng)季商品過去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.

⑴ 求,滿足的關(guān)系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案