精英家教網 > 高中數學 > 題目詳情
求以橢圓
x2
16
+
y2
9
=1的短軸的兩個端點為焦點,且過點A(4,-5)的雙曲線的標準方程.
因為橢圓
x2
16
+
y2
9
=1的短軸的兩個端點為焦點,所以c=3,
設雙曲線的方程為
y2
a2
-
x2
b2
=1
,點A(4,-5)在雙曲線上,
所以
(-5)2
a2
-
42
b2
=1
,
又a2+b2=9,與上式聯立解得a=
5
,b=2,
所求的雙曲線方程為:
y2
5
-
x2
4
=1
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C的中心在原點,長軸的一個頂點坐標為(2,0),離心率為
3
2

(1)求橢圓C的標準方程;
(2)設F1,F2為橢圓C的焦點,P為橢圓上一點,且PF1⊥PF2,求△PF1F2的面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的中心在原點,它在x軸上的一個焦點與短軸兩端點連線互相垂直,且此焦點和x軸上的較近端點的距離為4(
2
-1),求橢圓方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設F1,F2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦點,若橢圓C上存在點P,使線段PF1的垂直平分線過點F2,則橢圓離心率的取值范圍是(  )
A.(0,
1
3
]
B.(
1
2
,
2
3
C.[
1
3
,1)
D.[
1
3
,
2
3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

如圖:從橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上一點M向x軸作垂線,恰好通過橢圓的左焦點F1(-c,0),且
.
AB
.
OM
,則a,b,c必滿足______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

設p為橢圓等
x2
m
+
y2
24
=1(m≥32)上的一點,F1,F2是該橢圓的兩個焦點,若cos∠F1PF2=
5
13
則△PF1F2的面積是(  )
A.48B.16
C.32D.與m有關的值

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設F1,F2分別為橢C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右兩個焦點,橢圓C上的點A(1,
3
2
)
到兩點的距離之和等于4.
(Ⅰ)求橢圓C的方程和焦點坐標;
(Ⅱ)設點P是(Ⅰ)中所得橢圓上的動點Q(0.
1
2
)
求|PQ|的最大值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知橢圓
x2
25
+
y2
9
=1
,F1,F2分別為其左右焦點,橢圓上一點M到F1的距離是2,N是MF1的中點,則|ON|的長是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

在Rt△ABC中,AB=AC=1,如果橢圓經過A,B兩點,它的一個焦點為C,另一個焦點在AB上,則這個橢圓的離心率為______.

查看答案和解析>>

同步練習冊答案