若圓x2+y2=r2(r>0)上僅有4個(gè)點(diǎn)到直線x-y-2=0的距離為1,則實(shí)數(shù)r的取值范圍( 。
A、.r>
2
+1
B、
2
-1<r<
2
+1
C、0<r<
2
-1
D、0<r<
2
+1
分析:求出圓心到直線x-y-2=0的距離為
|0-0-2|
2
=
2
,依據(jù)題意,直線和圓相交,在直線的兩側(cè),圓上各有兩個(gè)點(diǎn)到直線的距離等于1,r-
2
>1,故半徑r應(yīng)大于
2
+1.
解答:解:圓x2+y2=r2(r>0)的圓心到直線x-y-2=0的距離為
|0-0-2|
2
=
2

故半徑應(yīng)大于
2
+1,
故選A.
點(diǎn)評(píng):本題考查直線和圓的位置關(guān)系,點(diǎn)到直線的距離公式的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓x2+y2=r2(r>0)與圓(x+3)2+(y-4)2=36相交,則r的取值范圍是
(1,11)
(1,11)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓x2+y2=r2(r>0)與圓x2+y2+6x-8y=0相交,則實(shí)數(shù)r的取值范圍是
(0,10)
(0,10)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓x2+y2=r2(r>0)至少能蓋住函數(shù)f(x)=
30
sin
πx
2
r
的圖象的一個(gè)最高點(diǎn)和一個(gè)最低點(diǎn),則r的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓x2+y2=r2(r>0)與圓C:x2+y2+2x-4y=0相切,則r的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案