三棱錐P-ABC的四個(gè)頂點(diǎn)均在半徑為2的球面上,且AB=BC=CA=2
3
,平面PAB⊥平面ABC,則三棱錐P-ABC的體積的最大值為( 。
A、4
B、3
C、4
3
D、3
2
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積
專(zhuān)題:空間位置關(guān)系與距離
分析:運(yùn)用題意判斷出三棱錐P-ABC的體積的最大值時(shí),幾何體的性質(zhì),在求解體積的值.
解答: 解:根據(jù)題意:半徑為2的球面上,且AB=BC=CA=2
3
,
△ABC為截面為大圓上三角形,
設(shè)圓形為O,AB的中點(diǎn)為N,ON═
22-3
=1
∵平面PAB⊥平面ABC,
∴三棱錐P-ABC的體積的最大值時(shí),PN⊥AB,PN⊥平面ABC,
PB=
22-1
=
3
,
∴三棱錐P-ABC的體積的最大值為
1
3
×
3
4
×(2
3
2×
3
=3,
故選:B
點(diǎn)評(píng):本題考查了幾何體的體積計(jì)算,探索幾何體的位置情況,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿(mǎn)足,a1=1,an+1=
an
2an+1
,n≥1
(1)求a2,a3,a4,a5
(2)猜測(cè)并證明數(shù)列{an}的通項(xiàng)公式
(3)證明a1a2+a2a3+…+anan+1
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=4x2,則此拋物線的準(zhǔn)線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中,公比q=2,log2a1+log2a2+…+log2a10=35,則 a1+a2+…+a10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,CP,CA,CB兩兩垂直且相等,過(guò)PA的中點(diǎn)D作平面α∥BC,且α分別交PB,PC于M,N,交AB,AC的延長(zhǎng)線于E,F(xiàn).
(Ⅰ)求證:EF⊥平面PAC;
(Ⅱ)若AB=2BE,求二面角P-DM-N的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點(diǎn),A(a,b),P是雙曲線右支上的動(dòng)點(diǎn).若|PF|+|PA|的最小值為3a,則該雙曲線的離心率為( 。
A、
10
-1
B、1+
10
C、
1+
3
2
D、
1+
10
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
OA
=(1,0),
OB
=(0,1),
OM
=(t,t)(t∈R),O是坐標(biāo)原點(diǎn).
(Ⅰ)若點(diǎn)A,B,M三點(diǎn)共線,求t的值;
(Ⅱ)當(dāng)t取何值時(shí),
MA
MB
取到最小值?并求出最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,2),B(3,2),以線段AB為直徑作圓C,則直線l:x+y-3=0與圓C的位置關(guān)系是( 。
A、相交且過(guò)圓心B、相交但不過(guò)圓心
C、相切D、相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果函數(shù)f(x)=x2-(a-1)x+3在區(qū)間(4,+∞)上是增函數(shù),那么實(shí)數(shù)a的取值范圍是( 。
A、(-∞,9]
B、[5,+∞)
C、[9,+∞)
D、(-∞,5]

查看答案和解析>>

同步練習(xí)冊(cè)答案