已知函數(shù).(1)求函數(shù)內(nèi)的單調(diào)遞增區(qū)間;
(2)若函數(shù)處取到最大值,求的值;
(3)若),求證:方程內(nèi)沒有實數(shù)解.(參考數(shù)據(jù):
(Ⅰ) 遞增區(qū)間為  (Ⅱ)   (Ⅲ)見解析
(1),令
,----------------2分
由于,則內(nèi)的單調(diào)遞增區(qū)間為
---------------4分
(注:將單調(diào)遞增區(qū)間寫成的形式扣1分)
(2)依題意,),-------6分由周期性,
;-----------------8分
(3)函數(shù))為單調(diào)增函數(shù),
且當時,,,此時有;-------------10分
時,由于,而,
則有,即
為增函數(shù),時,         ------12分
而函數(shù)的最大值為,即,則當時,恒有,
綜上,在恒有,即方程內(nèi)沒有實數(shù)解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某商店經(jīng)銷一種奧運紀念品,據(jù)預測,在元旦后的20天內(nèi)的每天銷售量(件)與價格(元)均為時間t(天)的函數(shù),且第t天的銷售量近似滿足g(t)=80-2t(件),第t天的價格近似滿足(元).
(1)試寫出該紀念品的日銷售額y與時間t(0≤t≤20)的函數(shù)關(guān)系式;
(2)求該紀念品的日銷售額y的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)滿足,函數(shù)滿足 ,且對任意>0,且
(1)求證:
(2)設(shè)的反函數(shù)為,當時,試比較的大小

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)某工廠生產(chǎn)某種兒童玩具,每件玩具的成本為30元,并且每件玩具的加工費為元(其中為常數(shù),且),設(shè)該工廠每件玩具的出廠價為元(),根據(jù)市場調(diào)查,日銷售量與為自然對數(shù)的底數(shù))成反比例,當每件玩具的出廠價為40元時,日銷售量為10件.
(Ⅰ)求該工廠的日利潤(元)與每件玩具的出廠價元的函數(shù)關(guān)系式;
(Ⅱ)當每件玩具的日售價為多少元時,該工廠的利潤最大,并求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù).
(1)若,試判斷函數(shù)零點個數(shù);
(2)若對,,試證明,使成立。
(3)是否存在,使同時滿足以下條件①對,且;②對,都有。若存在,求出的值,若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

造船廠年造船量20艘,造船艘產(chǎn)值函數(shù)為(單位:萬元),成本函數(shù)(單位:萬元),又在經(jīng)濟學中,函數(shù)的邊際函數(shù)定義為
(1)求利潤函數(shù)及邊際利潤函數(shù)(利潤=產(chǎn)值—成本)
(2)問年造船量安排多少艘時,公司造船利潤最大
(3)邊際利潤函數(shù)的單調(diào)遞減區(qū)間

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若存在實常數(shù),使得函數(shù)對其定義域上的任意實數(shù)分別滿足:,則稱直線的“隔離直線”.已知,(其中為自然對數(shù)的底數(shù)),根據(jù)你的數(shù)學知識,推斷間的隔離直線方程為                 .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某商品一年內(nèi)出廠價格在6元的基礎(chǔ)上按月份隨正弦曲線波動,已知3月份達到最高價格8元,7月份價格最低為4元,該商品在商店內(nèi)的銷售價格在8元基礎(chǔ)上按月份隨正弦曲線波動,5月份銷售價格最高為10元,9月份銷售價最低為6元,假設(shè)商店每月購進這種商品m件,且當月銷完,你估計哪個月份盈利最大?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題



(Ⅰ)將日利潤y(元)表示成日產(chǎn)量x(件)的函數(shù);
(Ⅱ)求該廠的日產(chǎn)量為多少件時,日利潤最大?并求出日利潤的最大值

查看答案和解析>>

同步練習冊答案