(文)設集合A⊆R,如果x0∈R滿足:對任意a>0,都存在x∈A,使得0<|x-x0|<a,那么稱x0為集合A的聚點.則在下列集合中:
(1)Z+∪Z-
(2)R+∪R-
(3){
n
n+1
|n∈N*}

(4){
1
n
|n∈N*}

以0為聚點的集合有______(寫出所有你認為正確結(jié)論的序號).
(1)對于某個a<1,比如a=0.5,此時對任意的x∈Z+∪Z-,都有|x-0|=0或者|x-0|≥1,也就是說不可能0<|x-0|<0.5,從而0不是Z+∪Z-的聚點;
(2)集合{x|x∈R,x≠0},對任意的a,都存在x=
a
2
(實際上任意比a小得數(shù)都可以),使得0<|x|=
a
2
<a
∴0是集合{x|x∈R,x≠0}的聚點;
(3)中,集合{
n
n+1
|n∈N*}
中的元素是極限為1的數(shù)列,除了第一項0之外,其余的都至少比0大
1
2
,
∴在a<
1
2
的時候,不存在滿足得0<|x|<a的x,
∴0不是集合{
n
n+1
|n∈N*}
的聚點;
(4)集合{
1
n
|n∈N*}
中的元素是極限為0的數(shù)列,對于任意的a>0,存在n>
1
a
,使0<|x|=
1
n
<a
∴0是集合 {
1
n
|n∈N*}
的聚點
故答案為(2)(4)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文)設集合A⊆R,如果x0∈R滿足:對任意a>0,都存在x∈A,使得0<|x-x0|<a,那么稱x0為集合A的聚點.則在下列集合中:
(1)Z+∪Z-
(2)R+∪R-
(3){
n
n+1
|n∈N*}

(4){
1
n
|n∈N*}

以0為聚點的集合有
(2)(4)
(2)(4)
(寫出所有你認為正確結(jié)論的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年臨沂市質(zhì)檢一文) 設全集U=R,A則下圖中陰影部分表示的集合為

                                                                  (    )

    A.               B.

    C.         D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年豐臺區(qū)二模文)設集合等于          (    )

       A.R                                                       B.

       C.                                                      D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【04湖南文】設集合U={(x,y)|x∈R,y∈R}, A={(x,y)|2x-y+m>0}, B={(x,y)|x+y-n≤0},

那么點P(2,3)的充要條件是

A.        B.

C.              D.

查看答案和解析>>

同步練習冊答案