已知橢圓E的中心在原點,焦點在x軸上,橢圓上的點到焦點的距離的最小值為
2
-1
,離心率e=
2
2

(Ⅰ)求橢圓E的方程;
(Ⅱ)過點(1,0)作直線l交E于P、Q兩點,試問在x軸上是否存在一定點M,使
MP
MQ
為定值?若存在,求出定點M的坐標;若不存在,請說明理由.
分析:(Ⅰ)
a-c=
2
-1
e=
c
a
=
2
2
?
a=
2
c=1
b=1
,由此能導出所求橢圓E的方程.
(Ⅱ)當直線l不與x軸重合時,可設直線l的方程為:x=ky+,由1
x2+2y2=2
x=ky+1
(1)
(2)
,整理得:(k2+2)y2+2ky-1=0,
y1+y2=-
2k
k2+2
y1y2=-
1
k2+2
,假設存在定點M(m,0),使得
MP
MQ
為定值.由此入手能夠推導出存在定點M(
5
4
,0)
,使得對于經過(1,0)點的任意一條直線l均有
MP
MQ
=-
7
16
(恒為定值).
解答:解:(Ⅰ)
a-c=
2
-1
e=
c
a
=
2
2
?
a=
2
c=1
b=1
,
∴所求橢圓E的方程為:
x2
2
+y2=1
(5分)
(Ⅱ)當直線l不與x軸重合時,可設直線l的方程為:x=ky+1
x2+2y2=2
x=ky+1
(1)
(2)
,
把(2)代入(1)整理得:(k2+2)y2+2ky-1=0(3)
y1+y2=-
2k
k2+2
y1y2=-
1
k2+2
,(8分)
假設存在定點M(m,0),使得
MP
MQ
為定值
MP
MQ
=(x1-m,y1)•(x2-m,y2)=(x1-m)(x2-m)+y1y2

=(ky1+1-m)(ky2+1-m)+y1y2=(k2+1)y1y2+k(1-m)(y1+y2)+(1-m)2=-
(k2+1)
k2+2
-
2k2(1-m)
k2+2
+(1-m)2
=
(2m-3)k2-1
k2+2
+(1-m)2=
(2m-3)(k2+2)+(5-4m)
k2+2
+(1-m)2

當且僅當5-4m=0,即m=
5
4
時,
MP
MQ
=-
7
16
(為定值).這時M(
5
4
,0)
(12分)
再驗證當直線l的傾斜角α=0時的情形,此時取P(-
2
,0)
,Q(
2
,0)
MP
=(-
2
-
5
4
,0)
,
MQ
=(
2
-
5
4
,0)
MP
MQ
=(-
2
-
5
4
)•(
2
-
5
4
)=-
7
16

∴存在定點M(
5
4
,0)
使得對于經過(1,0)點的任意一條直線l均有
MP
MQ
=-
7
16
(恒為定值).
點評:本題考查橢圓方程的求法和點M的存在性質的判斷.解題時要認真審題,注意挖掘題設中的隱含條件,靈活運用橢圓的性質,合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網已知橢圓E的中心在原點,焦點在x軸上,離心率為
3
2
,且過拋物線C:x2=4y的焦點F.
(I)求橢圓E的方程;
(II)過坐標平面上的點F'作拋物線c的兩條切線l1和l2,它們分別交拋物線C的另一條切線l3于A,B兩點.
(i)若點F′恰好是點F關于-軸的對稱點,且l3與拋物線c的切點恰好為拋物線的頂點(如圖),求證:△ABF′的外接圓過點F;
(ii)試探究:若改變點F′的位置,或切線l3的位置,或拋物線C的開口大小,(i)中的結論是否仍然成立?由此給出一個使(i)中的結論成立的命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E的中心在原點,焦點在x軸上,離心率為
2
2
,且橢圓經過圓C:x2+y2-2
2
x-2y=0
的圓心C.
(Ⅰ)求橢圓E的方程;
(Ⅱ) 設Q是橢圓E上的一點,過點Q的直線l交x軸于點F(-1,0),交y軸于點M,若|
MQ
|=2|
QF
|,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆山西省高二第二學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

已知橢圓E的中心在原點,焦點在軸上,橢圓上的點到兩個焦點的距離之和為,離心率

(1)求橢圓E的方程;

(2)作直線l:交橢圓E于點P、Q,且OP^OQ。求實數(shù)k的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:慶安三中2010--2011學年度高二下學期期末考試數(shù)學(文) 題型:解答題

已知橢圓E的中心在原點,焦點在軸上,橢圓上的點到兩個焦點的距離之和為,離心率

(1)求橢圓E的方程;

(2)作直線l:交橢圓E于點P、Q,且OP^OQ。求實數(shù)k的值.

 

查看答案和解析>>

同步練習冊答案