【題目】如圖1,在邊長為2的菱形中,,將沿對角線折起到的位置,使平面平面的中點,平面,且,如圖2.

1)求證:平面;

2)求平面與平面所成角的余弦值;

3)在線段上是否存在一點,使得平面?若存在,求的值;若不存在,說明理由.

【答案】1)見解析(23)線段上不存點,使得平面.見解析

【解析】

1)平面平面,由面面垂直的性質(zhì)定理,可證,得出,即可得證結(jié)論;

2)建立空間直角坐標系,求出平面的法向量,即可求解;

3)利用共線向量,將用坐標表示,根據(jù)平面法向量與平面,即可求出結(jié)論.

1)證明:∵,的中點,∴.

又平面平面,且平面平面,

.平面,∴,

平面平面,∴平面.

2)解:以所在直線為軸,所在直線為軸,

所在直線為軸建立空間直角坐標系,

如圖所示:則,,

,

,,

設(shè)平面的一個法向量為

,

,則.

又平面的一個法向量為,

.

則平面與平面所成角的余弦值為.

3)解:假設(shè)在線段上存在,使得平面

設(shè),則

,,..

,可知不存在,

∴線段上不存點,使得平面.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】漢字聽寫大會不斷創(chuàng)收視新高,為了避免“書寫危機”,弘揚傳統(tǒng)文化,某市大約10萬名市民進行了漢字聽寫測試現(xiàn)從某社區(qū)居民中隨機抽取50名市民的聽寫測試情況,發(fā)現(xiàn)被測試市民正確書寫漢字的個數(shù)全部在160到184之間,將測試結(jié)果按如下方式分成六組:第1組,第2組,,第6組,如圖是按上述分組方法得到的頻率分布直方圖.

若電視臺記者要從抽取的市民中選1人進行采訪,求被采訪人恰好在第2組或第6組的概率;

試估計該市市民正確書寫漢字的個數(shù)的平均數(shù)與中位數(shù);

已知第4組市民中有3名男性,組織方要從第4組中隨機抽取2名市民組成弘揚傳統(tǒng)文化宣傳隊,求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三角形 的邊長為3, 分別是邊上的點,滿足 (如圖1).將折起到的位置,使平面平面,連接(如圖2).

(1)求證:平面 ;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為.數(shù)列滿足.

1)若,且,求正整數(shù)的值;

2)若數(shù)列均是等差數(shù)列,求的取值范圍;

3)若數(shù)列是等比數(shù)列,公比為,且,是否存在正整數(shù),使,成等差數(shù)列,若存在,求出一個的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),且在上單調(diào)遞減,則的解集為  

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)已知兩個變量線性相關(guān),若它們的相關(guān)性越強,則相關(guān)系數(shù)的絕對值越接近于1.

2)線性回歸直線必過點;

3)對于分類變量AB的隨機變量,越大說明AB有關(guān)系的可信度越大.

4)在刻畫回歸模型的擬合效果時,殘差平方和越小,相關(guān)指數(shù)的值越大,說明擬合的效果越好.

5)根據(jù)最小二乘法由一組樣本點,求得的回歸方程是,對所有的解釋變量,的值一定與有誤差.

以上命題正確的序號為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點作圓的兩條切線,切點分別為,直線恰好經(jīng)過橢圓C的右頂點和上頂點.

1)求橢圓C方程;

2)過橢圓C左焦點F的直線l交橢圓C兩點,橢圓上存在一點P,使得四邊形為平行四邊形,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠對一批產(chǎn)品進行了抽樣檢測.右圖是根據(jù)抽樣檢測后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[9698),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個數(shù)是( ).

A. 90B. 75C. 60D. 45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

討論的單調(diào)性;

的極值點,且曲線在兩點 處的切線相互平行,這兩條切線在軸上的截距分別為,求的取值范圍

查看答案和解析>>

同步練習(xí)冊答案