【題目】已知函數(shù)的圖象過點(diǎn).

(1)求的值并求函數(shù)的值域;

(2)若關(guān)于的方程有實(shí)根,求實(shí)數(shù)的取值范圍;

(3)若函數(shù),則是否存在實(shí)數(shù),使得函數(shù)的最大值為?若存在,求出的值;若不存在,請(qǐng)說明理由.

【答案】(1), ;(2);(3存在使得函數(shù)的最大值為0.

【解析】試題分析:(1根據(jù)在圖象上,代入計(jì)算即可求解因?yàn)?/span>,所以,所以,可得函數(shù)的值域?yàn)?/span>;(2原方程等價(jià)于的圖象與直線有交點(diǎn),先證明的單調(diào)性,可得到的值域,從而可得實(shí)數(shù)的取值范圍;(3根據(jù), ,轉(zhuǎn)化為二次函數(shù)最大值問題,討論函數(shù)的最大值,求解實(shí)數(shù)即可.

試題解析:(1)因?yàn)楹瘮?shù) 的圖象過點(diǎn)

所以,即,所以 ,

所以,因?yàn)?/span>,所以,所以

所以函數(shù)的值域?yàn)?/span>.

2)因?yàn)殛P(guān)于的方程有實(shí)根,即方程有實(shí)根,

即函數(shù)與函數(shù)有交點(diǎn),

,則函數(shù)的圖象與直線有交點(diǎn)

任取,則,所以,所以

所以 ,

所以R上是減函數(shù)(或由復(fù)合函數(shù)判斷為單調(diào)遞減),

因?yàn)?/span>,所以,

所以實(shí)數(shù)的取值范圍是.

3)由題意知,

,則,

當(dāng)時(shí), ,所以,

當(dāng)時(shí), ,所以(舍去),

綜上,存在使得函數(shù)的最大值為0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,A1C1與B1D1的交點(diǎn)為O1 , AC與BD的交點(diǎn)為O.

(1)求證:直線OO1∥平面BCC1B1
(2)若AB=BC,求證:直線BO⊥平面ACC1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心為,直線.

(1)求圓心的軌跡方程;

(2)若,求直線被圓所截得弦長的最大值;

(3)若直線是圓心下方的切線,當(dāng)上變化時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在兩個(gè)正實(shí)數(shù)m、n,使得等式a(lnn﹣lnm)(4em﹣2n)=3m成立(其中e為自然對(duì)數(shù)的底數(shù)),則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,0)
B.(0, ]
C.[ ,+∞)
D.(﹣∞,0)∪[ ,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列4個(gè)命題: ①“若a、G、b成等比數(shù)列,則G2=ab”的逆命題;
②“如果x2+x﹣6≥0,則x>2”的否命題;
③在△ABC中,“若A>B”則“sinA>sinB”的逆否命題;
④當(dāng)0≤α≤π時(shí),若8x2﹣(8sinα)x+cos2α≥0對(duì)x∈R恒成立,則α的取值范圍是0≤α≤
其中真命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),已知點(diǎn)A(1,0,B(-1,0),圓的方程為,點(diǎn)為圓上的動(dòng)點(diǎn).

(1)求過點(diǎn)的圓的切線方程.

(2)的最大值及此時(shí)對(duì)應(yīng)的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某土特產(chǎn)銷售總公司為了解其經(jīng)營狀況,調(diào)查了其下屬各分公司月銷售額和利潤,得到數(shù)據(jù)如下表:

分公司名稱

雅雨

雅雨

雅女

雅竹

雅茶

月銷售額x(萬元)

3

5

6

7

9

月利潤y(萬元)

2

3

3

4

5

在統(tǒng)計(jì)中發(fā)現(xiàn)月銷售額x和月利潤額y具有線性相關(guān)關(guān)系.
(Ⅰ)根據(jù)如下的參考公式與參考數(shù)據(jù),求月利潤y與月銷售額x之間的線性回歸方程;
(Ⅱ)若該總公司還有一個(gè)分公司“雅果”月銷售額為10萬元,試求估計(jì)它的月利潤額是多少?(參考公式: = , = ,其中: =112, =200).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為評(píng)估新教改對(duì)教學(xué)的影響,挑選了水平相當(dāng)?shù)膬蓚(gè)平行班進(jìn)行對(duì)比試驗(yàn).甲班采用創(chuàng)新教法,乙班仍采用傳統(tǒng)教法,一段時(shí)間后進(jìn)行水平測(cè)試,成績結(jié)果全部落在[60,100]區(qū)間內(nèi)(滿分100分),并繪制頻率分布直方圖如圖,兩個(gè)班人數(shù)均為60人,成績80分及以上為優(yōu)良.
(1)根據(jù)以上信息填好下列2×2聯(lián)表,并判斷出有多大的把握認(rèn)為學(xué)生成績優(yōu)良與班級(jí)有關(guān)?

是否優(yōu)良
班級(jí)

優(yōu)良(人數(shù))

非優(yōu)良(人數(shù))

合計(jì)

合計(jì)


(2)以班級(jí)分層抽樣,抽取成績優(yōu)良的5人參加座談,現(xiàn)從5人中隨機(jī)選2人來作書面發(fā)言,求2人都來自甲班的概率. 下面的臨界值表供參考:

P(x2k)

0.10

0.05

0.010

k

2.706

3.841

6.635

(以下臨界值及公式僅供參考 ,n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f′(x)是函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(0)=2,f′(x)﹣f(x)>ex , 則使得f(x)>xex+2ex成立的x的取值范圍是(
A.(0,+∞)
B.(1,+∞)
C.(0,1)
D.(﹣∞,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案