5.角-2015°是(  )
A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角

分析 利用終邊相同的角的集合定理即可得出.

解答 解:∵-2015°=-360°×6+145°,而90°<145°<180°,
∴角-2015°所在的象限為第二象限.
故選:B.

點(diǎn)評(píng) 本題考查了終邊相同的角的集合定理,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓x2+y2=13a2與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右支交于A,B,且直線AB過雙曲線的右焦點(diǎn),則雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知一橢圓的對(duì)稱軸為坐標(biāo)軸且與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1有相同的焦點(diǎn),并且經(jīng)過點(diǎn)(3,-2),則此橢圓的方程為( 。
A.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{15}$+$\frac{{y}^{2}}{10}$=1D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{15}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知冪函數(shù)f(x)的圖象經(jīng)過點(diǎn)(-2,$\frac{1}{4}$):
(1)求函數(shù)f(x)的解析式,并畫出圖象;
(2)證明:函數(shù)f(x)在(0,+∞)上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,直線y=4與y軸的交點(diǎn)為P,與拋物線C的交點(diǎn)為Q,且|QF|=$\frac{5}{4}$|PQ|.已知橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點(diǎn)F1與拋物線C的焦點(diǎn)重合,且離心率為$\frac{1}{2}$•
(1)求拋物線C和橢圓E的方程;
(2)若過橢圓E的左焦點(diǎn)F2的直線l與橢圓交于A、B兩點(diǎn),求三角形OAB(O為坐標(biāo)原點(diǎn))的面積S△OAB的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=mx2-mx-1
(Ⅰ)若存在實(shí)數(shù)x,f(x)<0成立,求m的取值范圍;
(Ⅱ)若對(duì)于x∈[1,4],f(x)<-m+5恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在正四棱柱ABCD-A1B1C1D1中,AB=AD=2,AA1=4,則正四棱柱的外接球的表面積為24π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.將6本不同的書,分給甲、乙、丙三人,每人至少1本,則不同的分配方法種數(shù)為540.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合 A={y|y<a,或y>a2+1},B={y|y=2x-1,2≤x≤3},若A∩B=∅,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,2)B.$[{\sqrt{3},2}]$C.$(-∞,-2)∪[{\sqrt{3},2}]$D.$({-∞,-\sqrt{3}}]∪[{\sqrt{3},2}]$

查看答案和解析>>

同步練習(xí)冊(cè)答案