精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

1)若恒成立,求的取值范圍;

2)在(1)的條件下,有兩個不同的零點,求證:.

【答案】11;(2)證明見解析

【解析】

1)求導得到,討論兩種情況,根據函數單調性得到,解得答案.

2)要證明,只需要證明,設,求導得到單調性,得到,得到證明.

1)由已知得函數的定義域為,且,

時,,上單調遞增,

且當時,,不合題意;

時,由,

所以上單調遞減,在上單調遞增,處取到極小值,也是最小值,由題意,恒成立,

,上單調遞增,在上單調遞減,

所以,所以,即.

2,且處取到極小值1

時,時,,故

要證明:,只需證明,又,

故只需證明:,即證:

即證:,即證:,

,則

因為,所以,由(1)知恒成立,

所以,即,

所以上為增函數,所以,即命題成立.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某農場灌溉水渠長為1000米,橫截面是等腰梯形,如圖,在等腰梯形中,,,其中渠底寬為1米,渠口寬為3米,渠深.根據國家對農田建設補貼的政策,該農場計劃在原水渠的基礎上分別沿射線方向加寬、方向加深,若擴建后的水渠橫截面仍是等腰梯形,且面積是原面積的2.設擴建后渠深為米,若挖掘費用為每立方米萬元,水渠的內壁(渠底和梯形兩腰,端也要重新鋪設)鋪設混凝土的費用為每平方米萬元.

1)用表示渠底的長度,并求出的取值范圍;

2)問渠深為多少米時,建設費用最低?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)證明:函數上存在唯一的零點;

2)若函數在區(qū)間上的最小值為1,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某射擊運動員在比賽前進行三周的封閉訓練,教練員將其每天成績的均值數據整理,并繪成條形圖如下,

根據該圖,下列說法錯誤的是:(

A.第三周平均成績最好B.第一周平均成績比第二平均成績好

C.第一周成績波動較大D.第三周成績比較穩(wěn)定

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某周末,鄭州方特夢幻王國匯聚了八方來客.面對該園區(qū)內相鄰的兩個主題公園“千古蝶戀”和“西游傳說”,成年人和未成年人選擇游玩的意向會有所不同.某統計機構對園區(qū)內的100位游客(這些游客只在兩個主題公園中二選一)進行了問卷調查.調查結果顯示,在被調查的50位成年人中,只有10人選擇“西游傳說”,而選擇“西游傳說”的未成年人有20.

1)根據題意,請將下面的列聯表填寫完整;

選擇“西游傳說”

選擇“千古蝶戀”

總計

成年人

未成年人

總計

2)根據列聯表的數據,判斷是否有的把握認為選擇哪個主題公園與年齡有關.

附參考公式與表:.

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是一幅招貼畫的示意圖,其中ABCD是邊長為的正方形,周圍是四個全等的弓形.已知O為正方形的中心,GAD的中點,點P在直線OG上,弧AD是以P為圓心、PA為半徑的圓的一部分,OG的延長線交弧AD于點H.設弧AD的長為,.

1)求關于的函數關系式;

2)定義比值為招貼畫的優(yōu)美系數,當優(yōu)美系數最大時,招貼畫最優(yōu)美.證明:當角滿足:時,招貼畫最優(yōu)美.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R的奇函數滿足,且時, ,下面四種說法①;②函數在[-6,-2]上是增函數;③函數關于直線對稱;④若,則關于的方程在[-8,8]上所有根之和為-8,其中正確的序號__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2020年春季,某出租汽車公司決定更換一批新的小汽車以代替原來報廢的出租車,現有兩款車型,根據以往這兩種出租車車型的數據,得到兩款出租車車型使用壽命頻數表如下:

使用壽命年數

5

6

7

8

總計

型出租車()

10

20

45

25

100

型出租車()

15

35

40

10

100

1)填寫下表,并判斷是否有的把握認為出租車的使用壽命年數與汽車車型有關?

使用壽命不高于

使用壽命不低于

總計

總計

2)司機師傅小李準備在一輛開了年的型車和一輛開了年的型車中選擇,為了盡最大可能實現年內(含年)不換車,試通過計算說明,他應如何選擇.

附:,.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求直線的普通方程和曲線的直角坐標方程;

(2)設點,直線與曲線交于兩點,求的值.

查看答案和解析>>

同步練習冊答案