【題目】在四棱錐中,底面是矩形, 平面, 是等腰三角形, , 的一個三等分點(靠近點),的延長線交于點,連接.

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的正切值

【答案】(1)證明見解析;(2) .

【解析】試題分析:I由線面垂直的性質(zhì)可得 ,由矩形的性質(zhì)可得從而由線面垂直的判定定理可得平面,進而由面面垂直的判定定理可得結(jié)論;(II, , 分別為, 軸建立如圖所示的空間直角坐標(biāo)系,分別求出平面與平面的一個法向量,根據(jù)空間向量夾角余弦公式,可得夾角余弦值,利用同角三角函數(shù)之間的關(guān)系可得正切值.

試題解析(Ⅰ)證明:因為平面,所以

又因為底面是矩形,所以

又因為,所以平面.

又因為平面,所以平面平面.

(Ⅱ)解:方法一:(幾何法)過點,垂足為點,連接.

不妨設(shè),則.

因為平面,所以.

又因為底面是矩形,所以.

又因為,所以平面,所以A .

又因為,所以平面,所以

所以就是二面角的平面角.

中,由勾股定理得

由等面積法,得,

又由平行線分線段成比例定理,得.

所以.所以.

所以.

所以二面角的正切值為.

方法二:(向量法)以, 分別為, , 軸建立如圖所示的空間直角坐標(biāo)系:

不妨設(shè),則由(Ⅱ)可得, .

又由平行線分線段成比例定理,得

所以,所以.

所以點, , .

, .

設(shè)平面的法向量為,則

,得平面的一個法向量為;

又易知平面的一個法向量為;

設(shè)二面角的大小為,則.

所以.所以二面角的正切值為.

【方法點晴】本題主要考查線面垂直的判定定理及面面垂直的判定定理、利用空間向量求二面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=bln x.

(1)若函數(shù)yf(x)圖象上的點到直線xy-3=0距離的最小值為2 ,求a的值;

(2)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kxmg(x)≤kxm都成立,則稱直線ykxm為函數(shù)f(x)與g(x)的“分界線”.設(shè)a,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ).

(1)如果曲線在點處的切線方程為,求, 的值;

(2)若, ,關(guān)于的不等式的整數(shù)解有且只有一個,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

I)若曲線存在斜率為-1的切線,求實數(shù)a的取值范圍;

II)求的單調(diào)區(qū)間;

III)設(shè)函數(shù),求證:當(dāng)時, 上存在極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x2-ax+a)e-x,a∈R

(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;

(Ⅱ)設(shè)g(x)=f’(x),其中f’(x)為函數(shù)f(x)的導(dǎo)函數(shù).判斷g(x)在定義域內(nèi)是否為單調(diào)函數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為減少汽車尾氣排放,提高空氣質(zhì)量,各地紛紛推出汽車尾號限行措施.為做好此項工作,某市交警支隊對市區(qū)各交通樞紐進行調(diào)查統(tǒng)計,表中列出了某交通路口單位時間內(nèi)通過的1000輛汽車的車牌尾號記錄:

由于某些數(shù)據(jù)缺失,表中以英文字母作標(biāo)識.請根據(jù)圖表提供的信息計算:

(Ⅰ)若采用分層抽樣的方法從這1000輛汽車中抽出20輛,了解駕駛員對尾號限行的建議,應(yīng)分別從一、二、三、四組中各抽取多少輛?

(Ⅱ)以頻率代替概率,在此路口隨機抽取4輛汽車,獎勵汽車用品.用表示車尾號在第二組的汽車數(shù)目,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在極坐標(biāo)系中,已直曲線,將曲線C上的點向左平移一個單位,然后縱坐標(biāo)不變,橫坐標(biāo)伸長到原來的2倍,得到曲線C1,又已知直線,且直線C1交于A、B兩點,

1求曲線C1的直角坐標(biāo)方程,并說明它是什么曲線;

2)設(shè)定點, 求的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè),其中為函數(shù)的導(dǎo)函數(shù).判斷在定義域內(nèi)是否為單調(diào)函數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(xa)(xb)(其中ab),若f(x)的圖象如圖所示,則函數(shù)g(x)=axb的圖象大致為(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊答案