已知函數(shù)f(x)=
2x-1(x≤0)
f(x-1)+1(x>0)
,把函數(shù)g(x)=f(x)-x+1的零點(diǎn)按從小到大的順序排列成一個(gè)數(shù)列,該數(shù)列的前n項(xiàng)的和Sn,則S10=( 。
A.45B.55C.210-1D.29-1
當(dāng)x≤0時(shí),g(x)=f(x)-x+1=x,故a1=0
當(dāng)0<x≤1時(shí),有-1<x-1≤0,則f(x)=f(x-1)+1=2(x-1)-1+1=2x-2,g(x)=f(x)-x+1=x-1,故a2=1
當(dāng)1<x≤2時(shí),有0<x-1≤1,則f(x)=f(x-1)+1=2(x-1)-2+1=2x-3,g(x)=f(x)-x+1=x-2,故a3=2
當(dāng)2<x≤3時(shí),有1<x-1≤2,則f(x)=f(x-1)+1=2(x-1)-3+1=2x-4,g(x)=f(x)-x+1=x-3,故a4=3

以此類(lèi)推,當(dāng)n<x≤n+1(其中n∈N)時(shí),則f(x)=n+1,
故數(shù)列的前n項(xiàng)構(gòu)成一個(gè)以0為首項(xiàng),以1為公差的等差數(shù)列
故S10=
10(10-1)
2
=45
故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2-xx+1
;
(1)求出函數(shù)f(x)的對(duì)稱(chēng)中心;
(2)證明:函數(shù)f(x)在(-1,+∞)上為減函數(shù);
(3)是否存在負(fù)數(shù)x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2-x-1,x≤0
x
,x>0
,則f[f(-2)]=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函數(shù)f(x)的值域和最小正周期;
(2)當(dāng)x∈[0,2π]時(shí),求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2-
ax+1
(a∈R)
的圖象過(guò)點(diǎn)(4,-1)
(1)求a的值;
(2)求證:f(x)在其定義域上有且只有一個(gè)零點(diǎn);
(3)若f(x)+mx>1對(duì)一切的正實(shí)數(shù)x均成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],則當(dāng)x=
3
3
時(shí),函數(shù)f(x)有最大值,最大值為
2
3
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案