(2014•揭陽三模)如圖,以AB=4為直徑的圓與△ABC的兩邊分別交于E,F(xiàn)兩點,∠ACB=60°,則EF= .

 

 

2

【解析】

試題分析:由圓的內(nèi)接四邊形性質定理,結合三角相似的判定定理可以證得,△CEF∽△CBA,則我們可以找到EF與已知長度的AB邊之間的比例等于兩個相似三角形的相似比,故求出相似比是解決本題關鍵,由∠ACB=60°及AB為直徑,我們不難求出相似比代入求解即可.

證明:如圖,連接AE,

∵AB為圓的直徑,

∴∠AEB=∠AEC=90°

又∵∠ACB=60°

∴CA=2CE

由圓內(nèi)接四邊形性質易得:

∠CFE=∠CBA (由圓內(nèi)接四邊形對角互補,同角的補角相等得到的)

又因為∠C=∠C

△CEF∽△CBA

又∵AB=4

∴EF=2

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:[同步]2015人教A版必修二2.1空間點、直線、平面間位置關系練習卷(解析版) 題型:

用符號表示“點A在直線上l,直線l在平面α外”,正確的是( )

A.A∈l,l∉α B.A∈l,l?α C.A?l,l?α D.A?l,l∉α

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質及判定定理練習(解析版) 題型:填空題

(2014•高州市模擬)如圖,從圓O外一點A引圓的切線AD和割線ABC,已知AD=2,AC=6,圓O的半徑為3,則圓心O到AC的距離為 .

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質及判定定理練習(解析版) 題型:選擇題

(2009•寧夏)已知:如圖,⊙O1與⊙O2外切于C點,AB一條外公切線,A、B分別為切點,連接AC、BC.設⊙O1的半徑為R,⊙O2的半徑為r,若tan∠ABC=,則 的值為( )

A. B. C.2 D.3

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.2圓內(nèi)接四邊形性質與判定定理(解析版) 題型:填空題

(2012•和平區(qū)模擬)如圖,已知AB為圓O的直徑,AC與圓O相切于點A,CE∥AB交圓O于D、E兩點,若AB=6,BE=2,則線段CD的長為 .

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.2圓內(nèi)接四邊形性質與判定定理(解析版) 題型:選擇題

如圖所示,圓的內(nèi)接△ABC的∠C的平分線CD延長后交圓于點E,連接BE,已知BD=3,CE=7,BC=5,則線段BE=( )

A. B. C. D.4

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.2圓內(nèi)接四邊形性質與判定定理(解析版) 題型:選擇題

如圖,兩圓相交于A,B兩點,小圓經(jīng)過大圓的圓心O,點C,D分別在兩圓上,若∠ADB=100°,則∠ACB的度數(shù)為( )

A.35° B.40° C.50° D.80°

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年蘇教版選修1-2 3.2復數(shù)的四則運算練習卷(解析版) 題型:選擇題

復數(shù)=( )

A.0 B.2 C.﹣2i D.2i

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年蘇教版選修1-1 3.4導數(shù)在實際生活中的應用練習卷(解析版) 題型:填空題

如圖,在邊長為60cm的正方形鐵皮的四角切去相等的正方形,再把它的邊沿虛線折起,做成一個無蓋的方底箱子,最大容積是 .

 

 

查看答案和解析>>

同步練習冊答案