在△ABC中,M是BC的中點(diǎn),AM=1,點(diǎn)P在AM上且滿足
AP
=2
PM
,則
PA
•(
PB
+
PC
)=
 
分析:由題設(shè)條件
PB
+
PC
=2
PM
=
AP
,故可得
PA
•(
PB
+
PC
)=-
PA
2,由于線段PA長(zhǎng)度可以求出,故可解出
PA
•(
PB
+
PC
)的值.
解答:解:M是BC的中點(diǎn),
AP
=2
PM
,AM=1
PA
•(
PB
+
PC
)=
PA
•2
PM
=
PA
AP
=-(
PA
)2

=-(
2
3
MA
)2=-
4
9
.

故應(yīng)填-
4
9
點(diǎn)評(píng):本題考查向量的內(nèi)積公式與向量加法的三角形法則,本題恰當(dāng)?shù)乩孟蛄康南嚓P(guān)公式靈活變形達(dá)到了用已知向量表示未知向量,且求出未知向量的目標(biāo).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,M是BC邊靠近B點(diǎn)的三等分點(diǎn),若
AB
=a,
AC
=b
,則
AM
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知下列四個(gè)命題:
①把y=2cos(3x+
π
6
)的圖象上每點(diǎn)的橫坐標(biāo)和縱坐標(biāo)都變?yōu)樵瓉?lái)的
3
2
倍,再把圖象向右平移
π
2
單位,所得圖象解析式為y=2sin(2x-
π
3

②若m∥α,n∥β,α⊥β,則m⊥n
③在△ABC中,M是BC的中點(diǎn),AM=3,點(diǎn)P在AM上且滿足
AP
=2
PM
,則
PA
•(
PB
+
PC
 )
等于-4.
④函數(shù)f(x)=xsinx在區(qū)間[0,
π
2
]
上單調(diào)遞增,函數(shù)f(x)在區(qū)間[-
π
2
,0]
上單調(diào)遞減.
其中是真命題的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆甘肅省天水市三中高三第六次檢測(cè)數(shù)學(xué)文卷 題型:單選題

在△ABC中,M是BC的中點(diǎn),AM=1,點(diǎn)P在AM上且滿足=2,則·( + )等于

A.-B.-C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林省吉林一中高一(下)期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知下列四個(gè)命題:
①把y=2cos(3x+)的圖象上每點(diǎn)的橫坐標(biāo)和縱坐標(biāo)都變?yōu)樵瓉?lái)的倍,再把圖象向右平移單位,所得圖象解析式為y=2sin(2x-
②若m∥α,n∥β,α⊥β,則m⊥n
③在△ABC中,M是BC的中點(diǎn),AM=3,點(diǎn)P在AM上且滿足等于-4.
④函數(shù)f(x)=xsinx在區(qū)間上單調(diào)遞增,函數(shù)f(x)在區(qū)間上單調(diào)遞減.
其中是真命題的是( )
A.①②④
B.①③④
C.③④
D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年浙江省金華市艾青中學(xué)高考數(shù)學(xué)模擬試卷2(理科)(解析版) 題型:選擇題

已知下列四個(gè)命題:
①把y=2cos(3x+)的圖象上每點(diǎn)的橫坐標(biāo)和縱坐標(biāo)都變?yōu)樵瓉?lái)的倍,再把圖象向右平移單位,所得圖象解析式為y=2sin(2x-
②若m∥α,n∥β,α⊥β,則m⊥n
③在△ABC中,M是BC的中點(diǎn),AM=3,點(diǎn)P在AM上且滿足等于-4.
④函數(shù)f(x)=xsinx在區(qū)間上單調(diào)遞增,函數(shù)f(x)在區(qū)間上單調(diào)遞減.
其中是真命題的是( )
A.①②④
B.①③④
C.③④
D.①③

查看答案和解析>>

同步練習(xí)冊(cè)答案