【題目】稱正整數(shù)集合 A={a1,a2,an}1≤a1a2an,n≥2)具有性質(zhì) P:如果對(duì)任意的i,j1≤ijn),兩數(shù)中至少有一個(gè)屬于A.

1)分別判斷集合{1,36}{1,3,4,12}是否具有性質(zhì) P;

2)設(shè)正整數(shù)集合 A={a1,a2,an}1≤a1a2an,n≥2)具有性質(zhì) P.證明:對(duì)任意1≤iniN*),ai都是an的因數(shù);

3)求an=30時(shí)n的最大值.

【答案】1{1,3,6}不具有,{1,3,4,12}具有;(2)證明見(jiàn)解析;(38

【解析】

(1)根據(jù)性質(zhì)P;對(duì)任意的i,j1≤ijn),aiaj兩數(shù)中至少有一個(gè)屬于A,驗(yàn)證兩集合集{1,36}{1,3412}中的任何兩個(gè)元素的積、商是否為該集合中的元素;(2)運(yùn)用反證法,結(jié)合A具有性質(zhì)P,即可得證;(3)運(yùn)用30的質(zhì)因數(shù)分解,結(jié)合組合的知識(shí),即可得到n的最大值.

1)由于3×6均不屬于數(shù)集{1,3,6},∴數(shù)集{1,3,6} 不具有性質(zhì)P;

由于1×3,1×4,1×123×4,,都屬于數(shù)集{1,2,3,6}

∴數(shù)集{1,34,12} 具有性質(zhì)P.

2)證明:設(shè)正整數(shù)集合 A={a1a2,,an}1≤a1a2an,n≥2)具有性質(zhì) P,

即有對(duì)任意的ij1≤ijn),兩數(shù)中至少有一個(gè)屬于A.

運(yùn)用反證法證明.假設(shè)存在一個(gè)數(shù)ai不是an的因數(shù),

即有aian,都不屬于A,這與條件A具有性質(zhì)P矛盾.

故假設(shè)不成立.

則對(duì)任意1≤iniN*),ai都是an的因數(shù);

3)由(2)可知,均為的因數(shù),

由于30=2×3×5,由組合的知識(shí)可知23,5都有選與不選2種可能.

共有2×2×2=8種,即n的最大值為8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)?jiān)冖俪浞植槐匾獥l件,②必要不充分條件,③充要條件這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題(2)中,若問(wèn)題(2)中的實(shí)數(shù)存在,求出的取值范圍;若不存在,說(shuō)明理由.

已知集合.

1)求集合;

2)若成立的______條件,判斷實(shí)數(shù)是否存在?

注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬(wàn)元時(shí)兩類產(chǎn)品的收益分別為0.125萬(wàn)元和0.5萬(wàn)元。

(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;

(2)該家庭現(xiàn)有20萬(wàn)元資金,全部用于理財(cái)投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)n是一個(gè)正整數(shù),定義n個(gè)實(shí)數(shù)a1a2,,an的算術(shù)平均值為.設(shè)集合 M={12,3,2015},對(duì) M的任一非空子集 Z,令αz表示 Z中最大數(shù)與最小數(shù)之和,那么所有這樣的αz的算術(shù)平均值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知、兩個(gè)城鎮(zhèn)相距20公里,設(shè)中點(diǎn),在的中垂線上有一高鐵站,的距離為10公里.為方便居民出行,在線段上任取一點(diǎn)(點(diǎn)、不重合)建設(shè)交通樞紐,從高鐵站鋪設(shè)快速路到處,再鋪設(shè)快速路分別到、兩處.因地質(zhì)條件等各種因素,其中快速路造價(jià)為1.5百萬(wàn)元/公里,快速路造價(jià)為1百萬(wàn)元/公里,快速路造價(jià)為2百萬(wàn)元/公里,設(shè),總造價(jià)為(單位:百萬(wàn)元).

(1)求關(guān)于的函數(shù)關(guān)系式,并指出函數(shù)的定義域;

(2)求總造價(jià)的最小值,并求出此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系,為極點(diǎn),軸的非負(fù)半軸為極軸取相同的長(zhǎng)度單位建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù),),直線的極坐標(biāo)方程為.

(1)寫出曲線的普通方程和直線的直角坐標(biāo)方程;

(2)若為曲線上任意一點(diǎn),為直線任意一點(diǎn),的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】黨的十八提出:倡導(dǎo)富強(qiáng)、民主、文明、和諧、自由、平等、公正、法治、愛(ài)國(guó)、敬業(yè)、誠(chéng)信、友善社會(huì)主義核心價(jià)值觀.現(xiàn)將這十二個(gè)詞依次寫在六張規(guī)格相同的卡片的正反面(無(wú)區(qū)分),(如富強(qiáng)、民主寫在同一張卡片的兩面),從中任意抽取1張卡片,則寫有愛(ài)國(guó)”“誠(chéng)信兩詞中的一個(gè)的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:.

(1)若曲線的參數(shù)方程為為參數(shù)),求曲線的直角坐標(biāo)方程和曲線的普通方程;

(2)若曲線的參數(shù)方程為為參數(shù)),,且曲線與曲線的交點(diǎn)分別為、,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)fx)滿足fx+1)﹣fx)=4x+6,且f0)=3

)求fx)的解析式;

)設(shè)gx)=fx+a2x2+2a+2x,gx)在[2,+∞)單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案