【題目】已知函數(shù),,其中.

1)求函數(shù)的單調區(qū)間;

2)若對任意,任意,不等式恒成立時最大的記為,當時,的取值范圍.

【答案】1)見解析(2

【解析】

(1)求導后分兩種情況分析函數(shù)的單調性即可.

(2)參變分離可得,再令,求導得,再分析的單調性,,三種情況求解導函數(shù)的正負以及原函數(shù)的單調性,進而求得的解析式,再求導分析單調性與范圍即可.

解:(1)∵

,∵,

∴①當時,的減區(qū)間為,沒有增區(qū)間

②當時,的增區(qū)間為,減區(qū)間為

2)原不等式.

,,∴,

,

上遞增;

①當時,即,∵,所以,,

上遞增;∴.

②當,即,,∴上遞減;

③當時,又上遞增;

存在唯一實數(shù),使得,即,

則當.

.

.

.

上遞增,

,∴.

綜上所述,.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的極坐標方程

(1)若曲線只有一個公共點,求的值;

(2)為曲線上的兩點,且,求的面積最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前項和為,且.

(1)求證:數(shù)列為等比數(shù)列;

2)設數(shù)列的前項和為,求證: 為定值;

3)判斷數(shù)列中是否存在三項成等差數(shù)列,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】黃梅時節(jié)家家雨”“梅雨如煙暝村樹”“梅雨暫收斜照明”…江南梅雨的點點滴滴都流露著濃烈的詩情.每年六、七月份,我國長江中下游地區(qū)進入持續(xù)25天左右的梅雨季節(jié),如圖是江南鎮(zhèn)20092018年梅雨季節(jié)的降雨量(單位:)的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:

1)計算的值,并用樣本平均數(shù)估計鎮(zhèn)明年梅雨季節(jié)的降雨量;

2鎮(zhèn)的楊梅種植戶老李也在犯愁,他過去種植的甲品種楊梅,畝產量受降雨量的影響較大(把握超過八成).而乙品種楊梅這10年的畝產量(/畝)與降雨量的發(fā)生頻數(shù)(年)如列聯(lián)表所示(部分數(shù)據缺失).請你完善列聯(lián)表,幫助老李排解憂愁,試想來年應種植哪個品種的楊梅受降雨量影響更?并說明理由.

畝產量\降雨量

200400之間

200400之外

合計

2

1

合計

10

0.50

0.40

0.25

0.15

0.10

0.455

0.708

1.323

2.072

2.703

(參考公式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其中.

1)求函數(shù)的單調區(qū)間;

2)若對任意,任意,不等式恒成立時最大的記為,當時,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若曲線處的切線與直線垂直,求實數(shù)a的值;

2)若函數(shù)上單調遞增,求實數(shù)a的取值范圍;

3)當時,若方程有兩個相異實根,,求證

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,其焦距為,點在橢圓上,,直線的斜率為為半焦距)·

1)求橢圓的方程;

2)設圓的切線交橢圓兩點(為坐標原點),求證:;

3)在(2)的條件下,求的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4一4:坐標系與參數(shù)方程

在平面直角坐標系xOy中,曲線的參數(shù)方程為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線 是圓心的極坐標為()且經過極點的圓

(1)求曲線C1的極坐標方程和C2的普通方程;

(2)已知射線分別與曲線C1,C2交于點A,B(點B異于坐標原點O),求線段AB的長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年春,新型冠狀病毒在我國湖北武漢爆發(fā)并訊速蔓延,病毒傳染性強并嚴重危害人民生命安全,國家衛(wèi)健委果斷要求全體人民自我居家隔離,為支援湖北武漢新型冠狀病毒疫情防控工作,各地醫(yī)護人員紛紛逆行,才使得病毒蔓延得到了有效控制.某社區(qū)為保障居民的生活不受影響,由社區(qū)志愿者為其配送蔬菜、大米等生活用品,記者隨機抽查了男、女居民各100名對志愿者所買生活用品滿意度的評價,得到下面的2×2列聯(lián)表.

特別滿意

基本滿意

80

20

95

5

1)被調查的男性居民中有5個年輕人,其中有2名對志愿者所買生活用品特別滿意,現(xiàn)在這5名年輕人中隨機抽取3人,求至多有1人特別滿意的概率.

2)能否有99%的把握認為男、女居民對志愿者所買生活用品的評價有差異?

附:

查看答案和解析>>

同步練習冊答案