函數(shù)f(x)=x2-2x+|a-1|存在零點(diǎn)x0∈(
1
2
,2],則實(shí)數(shù)a的取值范圍是
 
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:得出-|a-1|=x2-2x,構(gòu)造函數(shù)g(x)=x2-2x,x∈(
1
2
,2],求解值域,得出-1≤-|a-1|≤0即可.
解答: 解:∵函數(shù)f(x)=x2-2x+|a-1|存在零點(diǎn)x0∈(
1
2
,2],
∴-|a-1|=x2-2x,
令g(x)=x2-2x,x∈(
1
2
,2],
∴-1≤g(x)≤0,
∴-1≤-|a-1|≤0,
解得:a∈[0,2],
故答案為:[0,2].
點(diǎn)評(píng):本題考查了函數(shù)的性質(zhì),零點(diǎn)問題,構(gòu)造函數(shù)求解值域范圍得出不等式求解,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(α-π)=2cos(α-2π),求
sin(3π-α)+5cos(-α)
2cos(π-α)-sin(α-π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):
1-(sin4x-sin2xcos2x+cos4x)
sin2x
+3sin2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an},其前n項(xiàng)和為Sn,若a2=4,2Sn=an(n+1),求a1,a3及數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+2x,x≥0
2x-x2,x<0
,若f(-x)+f(x)<2f(1),則實(shí)數(shù)x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若從區(qū)間(0,e)內(nèi)隨機(jī)取兩個(gè)數(shù),則這兩個(gè)數(shù)之積不小于e的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=logax的圖象經(jīng)過點(diǎn)(4,2)
(1)求函數(shù)的解析式;
(2)解不等式f(x2-x)>f(x+3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某中學(xué)將100名高一新生分成水平相同的甲,乙兩個(gè)“平行班”,每班50人.陳老師采用A,B兩種不同的教學(xué)方式分別在甲,乙兩個(gè)班級(jí)進(jìn)行教改實(shí)驗(yàn).為了解教學(xué)效果,期末考試后,陳老師分別從兩個(gè)班級(jí)中各隨機(jī)抽取20名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),作出莖葉圖如下,計(jì)成績(jī)不低于90分者為“成績(jī)優(yōu)秀”.
(1)從乙班樣本的20個(gè)個(gè)體中,從不低于86分的成績(jī)中隨機(jī)抽取2個(gè),求抽出的兩個(gè)均“成績(jī)優(yōu)秀”的概率;
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2x2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“成績(jī)優(yōu)秀”與教學(xué)方式有關(guān).
甲班(A方式)乙班(B方式)總計(jì)
成績(jī)優(yōu)秀
成績(jī)不優(yōu)秀
總計(jì)
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P((K2≥k)0.250.150.100.050.025
k1.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1
3
x+y=0,l2:kx-y+1=0,若l1到l2的夾角為60°,則k的值是( 。
A、
3
或0
B、-
3
或0
C、
3
D、-
3

查看答案和解析>>

同步練習(xí)冊(cè)答案